• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Física Médica ·

Física

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Aula 1 Prof Renilson

11

Aula 1 Prof Renilson

Física

UMG

Física Básica Vol 2 resolução 4a Ed

97

Física Básica Vol 2 resolução 4a Ed

Física

UMG

Resposta Física 12 Edição Young e Freedman Todos os Volumes

1

Resposta Física 12 Edição Young e Freedman Todos os Volumes

Física

UMG

19-o-ar-esta-pesado

11

19-o-ar-esta-pesado

Física

UFU

Trabalho de uma Força Não Concervativa Peso e Elastica

6

Trabalho de uma Força Não Concervativa Peso e Elastica

Física

UFOP

Sakurai_solucoes

11

Sakurai_solucoes

Física

UEG

Lista Fisica pf

11

Lista Fisica pf

Física

UFRJ

59441176-problemas-cap-3-todos

11

59441176-problemas-cap-3-todos

Física

UEG

12-por-que-nao-flutuamos

12

12-por-que-nao-flutuamos

Física

UFU

21-eureca

6

21-eureca

Física

UFU

Texto de pré-visualização

OPTICS\nFourth Edition\n\nINSTRUCTOR'S SOLUTIONS\nMANUAL\n\nEugene Hecht\nAdelphi University\n\nMark Coffey\nUniversity of Colorado\n\nPaul Dolan\nNortheastern Illinois University\n\nAddison\nWesley\n\nSan Francisco Boston New York\nCape Town Hong Kong London \nMadrid Mexico City Montreal Munich Paris Singapore Sydney Tokyo Toronto ISBN 0-8033-8379-0\n\nCopyright © 2002 Pearson Education, Inc., publishing as Addison Wesley, 1301 Sansome St., San Francisco, CA 94111. All rights reserved. Manufactured in the United States of America. This publication is protected by copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form by any means, electronic, mechanical, photocopying, recording, or otherwise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 1900 E. Lake Ave., Glenview, IL 60025. For information regarding permissions, call 847/486-2653.\n\nMany of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all.\n\n45678910—BTP—06 04 03 02 01\n\nwww.aw.com/physics Contents\n\nChapter 2 Solutions 1\nChapter 3 Solutions 7\nChapter 4 Solutions 15\nChapter 5 Solutions 30\nChapter 6 Solutions 45\nChapter 7 Solutions 52\nChapter 8 Solutions 61\nChapter 9 Solutions 72\nChapter 10 Solutions 80\nChapter 11 Solutions 87\nChapter 12 Solutions 93\nChapter 13 Solutions 97\n\niii (0.003)(2.54 x 10^-2/580 x 10^-9) = number of waves = 131, c = v/\\lambda, \\lambda = c/v = 3 x 10^8/10^10, \\lambda = 3 cm. Waves extend 3.9 m.\n\n2.2 \\lambda = c/v = 3 x 10^8/5 x 10^14 = 6 x 10^-7 m = 0.6\\mu m.\n\\lambda = 3 x 10^8/60 = 5 x 10^6 m = 5 x 10^6 km.\n\n2.3 v = v/\\lambda = 5 x 10^-7 x 6 x 10^6 = 300 m/s.\n\n2.4 The time between the crests is the period, so \\tau = 1/f; hence \\nu = 1/\\tau = 2.0 Hz. As for the speed v = L/t = 4.5 m/1.5 s = 3.0 m/s. We now know \\tau, v, and u and must determine \\lambda. Thus, \\lambda = v/\\nu = 3.0 m/s/2.0 Hz = 1.5 m.\n\n2.5 v = v/\\lambda = 3.5 x 10^3 m/s = \\sqrt{(4.3 m)}; \\nu = 0.81 kHz.\n\n2.6 v = \\lambda = 1498 m/s = (440 Hz)\\lambda; \\lambda = 3.40 m.\n\n2.7 v = (10 m)/2.0 s = 5.0 m/s; \\nu = v/\\lambda = (5.0 m/s)/(0.50 m) = 10 Hz.\n\n2.8 v = \\lambda = (\\omega/2\\pi)\\lambda and so \\omega = (2\\pi/\\lambda)v.\n\n2.9 \\begin{tabular}{|c|c|c|c|c|c|}\n\\hline\nθ & -\\frac{\\pi}{2} & -\\frac{\\pi}{4} & 0 & \\frac{\\pi}{4} & \\frac{\\pi}{2} & 3\\frac{\\pi}{4} \\\\\n\\hline\n\\sin \\theta & -1 & -\\frac{\\sqrt{2}}{2} & 0 & \\frac{\\sqrt{2}}{2} & 1 & \\frac{\\sqrt{2}}{2} \\\\\n\\cos \\theta & 0 & \\frac{\\sqrt{2}}{2} & 1 & \\frac{\\sqrt{2}}{2} & 0 & -\\frac{\\sqrt{2}}{2} \\\\\n\\sin(θ - \\frac{\\pi}{4}) & -\\frac{\\sqrt{2}}{2} & -1 & -\\frac{\\sqrt{2}}{2} & 0 & \\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2}}{2} \\\\\n\\sin(θ - \\frac{3}{4}) & 0 & -\\frac{\\sqrt{2}}{2} & 1 & -1 & -\\frac{\\sqrt{2}}{2} & 0 \\\\\n\\sin(θ + \\frac{\\pi}{2}) & 0 & \\frac{\\sqrt{2}}{2} & 1 & \\frac{\\sqrt{2}}{2} & 0 & -\\frac{\\sqrt{2}}{2} \\\\\n\\hline\n\\end{tabular} 2.10 x = -\\frac{\\lambda}{2} -\\frac{\\lambda}{4} + 0 + \\frac{\\lambda}{4} + \\frac{3\\lambda}{4} \\n\n\\kappa = 2\\pi/\\lambda\\n\\cos(kx - \\frac{\\pi}{2}) = -\\sin(kx - \\frac{\\pi}{2})\\n\\sin(kx + \\frac{3\\pi}{4})\\n2.11\\nu = \\frac{2\\pi}{\\tau} = -\\frac{3\\pi}{4}\\n\\sin(\\frac{kx - \\pi}{4})\\n\\sin(\\frac{\\pi}{4} - t)\\n2.12 Comparing \\nu with Eq. (2.13) tells us that A = 0.02 m. Moreover, 2\\pi/\\tau = 157 m^-1 and so \\lambda = 2\\pi/(157 m^-1) = 0.0400 m. The relationship between frequency and wavelength is \\nu = v/\\lambda, and so \\nu = \\frac{v}{\\lambda} = 1.2 m/s/0.0400 m = 30 Hz. The period is the inverse of the frequency, and therefore \\tau = 1/\\nu = 0.033 s.\n\n2.13 (a) \\lambda = (4.0 - 0.0) m = 4.0 m. (b) \\nu = v/\\lambda, so \\nu = \\frac{v}{\\lambda} = (20.0 m/s)/(4.0 m) = 5.0 Hz. (c) \\nu = v/\\lambda = (40.0 cm/s)/(5.0 cm) = 8.00 cm.\n\n2.14 (a) \\lambda = (30.0 - 0.0) cm = 30.0 cm. (c) \\nu = v/\\lambda, so \\nu = \\frac{v}{\\lambda} = (100 cm/s)/(30.0 cm) = 3.33 Hz. 2.15 (a) \\tau = (0.20 - 0.00) s = 0.20 s. (b) \\nu = 1/\\tau = 1/(0.20s) = 5.00 Hz. (c) v = \\lambda, so A = v = (440 cm/s)/(5.00 s) = 8.00 cm.\n\n2.16 \\psi = A \\sin(2\\pi(x/\\lambda - \\nu t)) = v = 4 sin(2\\pi(0.2x - 3t). (a) x = 1/0.2, (b) A = 1/3, (d) A = 15, (f) positive x \\n\\psi = A \\sin(kx - \\omega t + e). From the figure, A = 0.020 m; k = 2\\pi/\\lambda = 2\\pi/(4.0 m) = 0.5\\pi m^{-1}; \\omega = 2\\pi\\times(5.0 Hz) = 10.0\\pi rad/s.\\n\\nAt t = 0, x = 0, \\psi(0,0) = -0.020 m; \\psi(0, t) = (0.020 m) \\sin(0.5\\pi(0) - 10.0t(0) + e) = (0.020 m) \\sin(e); \\sin(e) = -1; c = -\\pi/2. \\psi(x, t) = (0.020 m) \\sin(0.5\\pi x - 10.0t - \\frac{\\pi}{2})\\n2.21 \\nu = -\\omega A \\cos(kx - \\omega t + e), a_y = -\\omega^2y. Simple harmonic motion since a_y \\propto y. \\n2.22 \\tau = 2.2 x 10^{-15} s; therefore \\nu = 1/\\tau = 4.5 x 10^{14} Hz; \\nu = v/\\lambda, \\lambda = v/\\nu = 6.6 x 10^{-7} m and k = 2\\pi/\\lambda = 9.5 x 10^6 m^{-1}.\\n\\psi(x,t) = (10^6 V/m) \\cos(9.5 x 10^6 m^{-1}(x + 3 x 10^8 (m/s)t)). \\text{It's cosine because cos 0 = 1.}\\n2.23 y(x,t) = C/2 + (x + vt)^{2}. [(4 - 0)z + (2 - 0)j + (1 - 0)i]e^{√(4 + 2² + 1²)} = (4i + 2j + k)/√21 and k = k(4i + 2j + k)/√21. r = xi + yj + zk, hence ψ(r, x, y, z, t) = A sin(4k/√21)x + (2k/√21)y + (k/√21)z - ωt.\n2.43 k = (1 + 0j + 0k), r = xi + yj + zk, so, ψ = A sin(k·r - ωt + e) = A sin(kz - ωt + e) where k = 2π/λ (could use cos instead of sin).\n2.44 ψ(r₁, t) = ψ(r₁ - r₂( r₂ - r₁), t) = ψ(k·r, t) = ψ(k·(r₂ - r₁), t) = ψ(k·r - (r₂ - r₁), t) = ψ(r₂ - r₁) = 0.\nψ(r₂ - r₁) = ψ(r₁, t) since k·(r₂ - r₁) = 0.\n2.45 θ = -π/2 - π/4 = 3π/4 = 5π/4, 3π/4 = 3/4, 5π/4 = 3π/4, sin(θ) = -1/√2, sin(2θ) = -1/√2, sin(3θ) = -√3/√2, sin(3θ) = 0, sin(3θ) = 1. \n2.46 sin(e - θ = -π/2) = sin(-π/2) = -1, (2θ + sin(θ - π/2) = sin(e - θ = -π/2) = 0, hence sin(e + θ) = 1.\n2.47 Note that the amplitude of {sin(θ) + sin(θ - π/2)} is greater than 1, the amplitude of {sin(θ) + sin(θ - 4π/3)} is less than 1. The phase difference is π/8.\n2.48 kx = -π/2 - π/2, π/2 π/2 2π.\ncos kx -1 0 1 0 -1 0 1\ncos(kx + π) 1 0 -1 0 1 0 -1 Chapter 3 Solutions\n\n3.1 Compare E_y = 2 cos(2π × 10^14(t - z/c) + π/2) to\nE_y = A cos[2πvt(t - z/v) + π/2]. (a) v = 10^14 Hz, v = c, and\nλ = c/v = 3 × 10^8/10^14 = 3 × 10^-6 m, moves in positive x-direction,\nA = 2 √2 V/m, ε = r/2 linearly polarized in the y-direction. (b) B_z = 0,\nB_y = 0, B_x = E_y/c.\n\n3.2 E_x = 0, E_y = E_0 sin(kz - ωt) or cosine; B_z = 0, B_y = -B_x = E_y/c,\nor if you like,\nE = E_0/√2 (i + j) sin(kz - ωt), B = E_0/c√2 (j - i) sin(kz - ωt).\n\n3.3 First, by the right-hand rule, the directions of the vectors are right. Then\nkE = ωB and so (2π/λ)E = ωB = 2πνB, hence E = λB = c.\n\n3.4 ∂E/∂x = -kE sin(kz - ωt); -∂B/∂t = -ωB sin(kz - ωt);\n-kE = -ωB; E_0 = -ωB_0 and Eq. (2.33) μ = κ = c.\n\n3.5 (a) The electric field oscillates along the line specified by the vector\n-i + √3; (b) To find E_0, dot E_0 with itself and take the square root, thus\nE_0 = √9 + 27 × 10^4 V/m = 6 × 10^4 V/m. (c) From the exponential\nk·r = (√5x + 2y)(3/7) × 10^7, hence k = (√5 + 2j) × 10^7 and\nbecause the phase is k·r - ωt rather than k·r + ωt the wave moves in the\ndirection of k. (d) k·k = (x × 10^7)², k = x × 10^7 m⁻¹ and\nλ = 2π/k = 200 nm. (e) ω = 9.42 × 10^{15} rad/s and\nν = ω/2π = 1.5 × 10^{15} Hz. (f) ν = νλ = 3.00 × 10^8 m/s.

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Aula 1 Prof Renilson

11

Aula 1 Prof Renilson

Física

UMG

Física Básica Vol 2 resolução 4a Ed

97

Física Básica Vol 2 resolução 4a Ed

Física

UMG

Resposta Física 12 Edição Young e Freedman Todos os Volumes

1

Resposta Física 12 Edição Young e Freedman Todos os Volumes

Física

UMG

19-o-ar-esta-pesado

11

19-o-ar-esta-pesado

Física

UFU

Trabalho de uma Força Não Concervativa Peso e Elastica

6

Trabalho de uma Força Não Concervativa Peso e Elastica

Física

UFOP

Sakurai_solucoes

11

Sakurai_solucoes

Física

UEG

Lista Fisica pf

11

Lista Fisica pf

Física

UFRJ

59441176-problemas-cap-3-todos

11

59441176-problemas-cap-3-todos

Física

UEG

12-por-que-nao-flutuamos

12

12-por-que-nao-flutuamos

Física

UFU

21-eureca

6

21-eureca

Física

UFU

Texto de pré-visualização

OPTICS\nFourth Edition\n\nINSTRUCTOR'S SOLUTIONS\nMANUAL\n\nEugene Hecht\nAdelphi University\n\nMark Coffey\nUniversity of Colorado\n\nPaul Dolan\nNortheastern Illinois University\n\nAddison\nWesley\n\nSan Francisco Boston New York\nCape Town Hong Kong London \nMadrid Mexico City Montreal Munich Paris Singapore Sydney Tokyo Toronto ISBN 0-8033-8379-0\n\nCopyright © 2002 Pearson Education, Inc., publishing as Addison Wesley, 1301 Sansome St., San Francisco, CA 94111. All rights reserved. Manufactured in the United States of America. This publication is protected by copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form by any means, electronic, mechanical, photocopying, recording, or otherwise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 1900 E. Lake Ave., Glenview, IL 60025. For information regarding permissions, call 847/486-2653.\n\nMany of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all.\n\n45678910—BTP—06 04 03 02 01\n\nwww.aw.com/physics Contents\n\nChapter 2 Solutions 1\nChapter 3 Solutions 7\nChapter 4 Solutions 15\nChapter 5 Solutions 30\nChapter 6 Solutions 45\nChapter 7 Solutions 52\nChapter 8 Solutions 61\nChapter 9 Solutions 72\nChapter 10 Solutions 80\nChapter 11 Solutions 87\nChapter 12 Solutions 93\nChapter 13 Solutions 97\n\niii (0.003)(2.54 x 10^-2/580 x 10^-9) = number of waves = 131, c = v/\\lambda, \\lambda = c/v = 3 x 10^8/10^10, \\lambda = 3 cm. Waves extend 3.9 m.\n\n2.2 \\lambda = c/v = 3 x 10^8/5 x 10^14 = 6 x 10^-7 m = 0.6\\mu m.\n\\lambda = 3 x 10^8/60 = 5 x 10^6 m = 5 x 10^6 km.\n\n2.3 v = v/\\lambda = 5 x 10^-7 x 6 x 10^6 = 300 m/s.\n\n2.4 The time between the crests is the period, so \\tau = 1/f; hence \\nu = 1/\\tau = 2.0 Hz. As for the speed v = L/t = 4.5 m/1.5 s = 3.0 m/s. We now know \\tau, v, and u and must determine \\lambda. Thus, \\lambda = v/\\nu = 3.0 m/s/2.0 Hz = 1.5 m.\n\n2.5 v = v/\\lambda = 3.5 x 10^3 m/s = \\sqrt{(4.3 m)}; \\nu = 0.81 kHz.\n\n2.6 v = \\lambda = 1498 m/s = (440 Hz)\\lambda; \\lambda = 3.40 m.\n\n2.7 v = (10 m)/2.0 s = 5.0 m/s; \\nu = v/\\lambda = (5.0 m/s)/(0.50 m) = 10 Hz.\n\n2.8 v = \\lambda = (\\omega/2\\pi)\\lambda and so \\omega = (2\\pi/\\lambda)v.\n\n2.9 \\begin{tabular}{|c|c|c|c|c|c|}\n\\hline\nθ & -\\frac{\\pi}{2} & -\\frac{\\pi}{4} & 0 & \\frac{\\pi}{4} & \\frac{\\pi}{2} & 3\\frac{\\pi}{4} \\\\\n\\hline\n\\sin \\theta & -1 & -\\frac{\\sqrt{2}}{2} & 0 & \\frac{\\sqrt{2}}{2} & 1 & \\frac{\\sqrt{2}}{2} \\\\\n\\cos \\theta & 0 & \\frac{\\sqrt{2}}{2} & 1 & \\frac{\\sqrt{2}}{2} & 0 & -\\frac{\\sqrt{2}}{2} \\\\\n\\sin(θ - \\frac{\\pi}{4}) & -\\frac{\\sqrt{2}}{2} & -1 & -\\frac{\\sqrt{2}}{2} & 0 & \\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2}}{2} \\\\\n\\sin(θ - \\frac{3}{4}) & 0 & -\\frac{\\sqrt{2}}{2} & 1 & -1 & -\\frac{\\sqrt{2}}{2} & 0 \\\\\n\\sin(θ + \\frac{\\pi}{2}) & 0 & \\frac{\\sqrt{2}}{2} & 1 & \\frac{\\sqrt{2}}{2} & 0 & -\\frac{\\sqrt{2}}{2} \\\\\n\\hline\n\\end{tabular} 2.10 x = -\\frac{\\lambda}{2} -\\frac{\\lambda}{4} + 0 + \\frac{\\lambda}{4} + \\frac{3\\lambda}{4} \\n\n\\kappa = 2\\pi/\\lambda\\n\\cos(kx - \\frac{\\pi}{2}) = -\\sin(kx - \\frac{\\pi}{2})\\n\\sin(kx + \\frac{3\\pi}{4})\\n2.11\\nu = \\frac{2\\pi}{\\tau} = -\\frac{3\\pi}{4}\\n\\sin(\\frac{kx - \\pi}{4})\\n\\sin(\\frac{\\pi}{4} - t)\\n2.12 Comparing \\nu with Eq. (2.13) tells us that A = 0.02 m. Moreover, 2\\pi/\\tau = 157 m^-1 and so \\lambda = 2\\pi/(157 m^-1) = 0.0400 m. The relationship between frequency and wavelength is \\nu = v/\\lambda, and so \\nu = \\frac{v}{\\lambda} = 1.2 m/s/0.0400 m = 30 Hz. The period is the inverse of the frequency, and therefore \\tau = 1/\\nu = 0.033 s.\n\n2.13 (a) \\lambda = (4.0 - 0.0) m = 4.0 m. (b) \\nu = v/\\lambda, so \\nu = \\frac{v}{\\lambda} = (20.0 m/s)/(4.0 m) = 5.0 Hz. (c) \\nu = v/\\lambda = (40.0 cm/s)/(5.0 cm) = 8.00 cm.\n\n2.14 (a) \\lambda = (30.0 - 0.0) cm = 30.0 cm. (c) \\nu = v/\\lambda, so \\nu = \\frac{v}{\\lambda} = (100 cm/s)/(30.0 cm) = 3.33 Hz. 2.15 (a) \\tau = (0.20 - 0.00) s = 0.20 s. (b) \\nu = 1/\\tau = 1/(0.20s) = 5.00 Hz. (c) v = \\lambda, so A = v = (440 cm/s)/(5.00 s) = 8.00 cm.\n\n2.16 \\psi = A \\sin(2\\pi(x/\\lambda - \\nu t)) = v = 4 sin(2\\pi(0.2x - 3t). (a) x = 1/0.2, (b) A = 1/3, (d) A = 15, (f) positive x \\n\\psi = A \\sin(kx - \\omega t + e). From the figure, A = 0.020 m; k = 2\\pi/\\lambda = 2\\pi/(4.0 m) = 0.5\\pi m^{-1}; \\omega = 2\\pi\\times(5.0 Hz) = 10.0\\pi rad/s.\\n\\nAt t = 0, x = 0, \\psi(0,0) = -0.020 m; \\psi(0, t) = (0.020 m) \\sin(0.5\\pi(0) - 10.0t(0) + e) = (0.020 m) \\sin(e); \\sin(e) = -1; c = -\\pi/2. \\psi(x, t) = (0.020 m) \\sin(0.5\\pi x - 10.0t - \\frac{\\pi}{2})\\n2.21 \\nu = -\\omega A \\cos(kx - \\omega t + e), a_y = -\\omega^2y. Simple harmonic motion since a_y \\propto y. \\n2.22 \\tau = 2.2 x 10^{-15} s; therefore \\nu = 1/\\tau = 4.5 x 10^{14} Hz; \\nu = v/\\lambda, \\lambda = v/\\nu = 6.6 x 10^{-7} m and k = 2\\pi/\\lambda = 9.5 x 10^6 m^{-1}.\\n\\psi(x,t) = (10^6 V/m) \\cos(9.5 x 10^6 m^{-1}(x + 3 x 10^8 (m/s)t)). \\text{It's cosine because cos 0 = 1.}\\n2.23 y(x,t) = C/2 + (x + vt)^{2}. [(4 - 0)z + (2 - 0)j + (1 - 0)i]e^{√(4 + 2² + 1²)} = (4i + 2j + k)/√21 and k = k(4i + 2j + k)/√21. r = xi + yj + zk, hence ψ(r, x, y, z, t) = A sin(4k/√21)x + (2k/√21)y + (k/√21)z - ωt.\n2.43 k = (1 + 0j + 0k), r = xi + yj + zk, so, ψ = A sin(k·r - ωt + e) = A sin(kz - ωt + e) where k = 2π/λ (could use cos instead of sin).\n2.44 ψ(r₁, t) = ψ(r₁ - r₂( r₂ - r₁), t) = ψ(k·r, t) = ψ(k·(r₂ - r₁), t) = ψ(k·r - (r₂ - r₁), t) = ψ(r₂ - r₁) = 0.\nψ(r₂ - r₁) = ψ(r₁, t) since k·(r₂ - r₁) = 0.\n2.45 θ = -π/2 - π/4 = 3π/4 = 5π/4, 3π/4 = 3/4, 5π/4 = 3π/4, sin(θ) = -1/√2, sin(2θ) = -1/√2, sin(3θ) = -√3/√2, sin(3θ) = 0, sin(3θ) = 1. \n2.46 sin(e - θ = -π/2) = sin(-π/2) = -1, (2θ + sin(θ - π/2) = sin(e - θ = -π/2) = 0, hence sin(e + θ) = 1.\n2.47 Note that the amplitude of {sin(θ) + sin(θ - π/2)} is greater than 1, the amplitude of {sin(θ) + sin(θ - 4π/3)} is less than 1. The phase difference is π/8.\n2.48 kx = -π/2 - π/2, π/2 π/2 2π.\ncos kx -1 0 1 0 -1 0 1\ncos(kx + π) 1 0 -1 0 1 0 -1 Chapter 3 Solutions\n\n3.1 Compare E_y = 2 cos(2π × 10^14(t - z/c) + π/2) to\nE_y = A cos[2πvt(t - z/v) + π/2]. (a) v = 10^14 Hz, v = c, and\nλ = c/v = 3 × 10^8/10^14 = 3 × 10^-6 m, moves in positive x-direction,\nA = 2 √2 V/m, ε = r/2 linearly polarized in the y-direction. (b) B_z = 0,\nB_y = 0, B_x = E_y/c.\n\n3.2 E_x = 0, E_y = E_0 sin(kz - ωt) or cosine; B_z = 0, B_y = -B_x = E_y/c,\nor if you like,\nE = E_0/√2 (i + j) sin(kz - ωt), B = E_0/c√2 (j - i) sin(kz - ωt).\n\n3.3 First, by the right-hand rule, the directions of the vectors are right. Then\nkE = ωB and so (2π/λ)E = ωB = 2πνB, hence E = λB = c.\n\n3.4 ∂E/∂x = -kE sin(kz - ωt); -∂B/∂t = -ωB sin(kz - ωt);\n-kE = -ωB; E_0 = -ωB_0 and Eq. (2.33) μ = κ = c.\n\n3.5 (a) The electric field oscillates along the line specified by the vector\n-i + √3; (b) To find E_0, dot E_0 with itself and take the square root, thus\nE_0 = √9 + 27 × 10^4 V/m = 6 × 10^4 V/m. (c) From the exponential\nk·r = (√5x + 2y)(3/7) × 10^7, hence k = (√5 + 2j) × 10^7 and\nbecause the phase is k·r - ωt rather than k·r + ωt the wave moves in the\ndirection of k. (d) k·k = (x × 10^7)², k = x × 10^7 m⁻¹ and\nλ = 2π/k = 200 nm. (e) ω = 9.42 × 10^{15} rad/s and\nν = ω/2π = 1.5 × 10^{15} Hz. (f) ν = νλ = 3.00 × 10^8 m/s.

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®