Baixe o app do Guru IA

Android e iOS

Foto de perfil

Gabyy

ENVIADA PELO APP
Estudos Gerais08/06/2024

01) Calcule os determinantes das matrizes abaixo utilizando ...

  1. Calcule os determinantes das matrizes abaixo utilizando o teorema de Laplace: a) M=[3421501200401033]M=\left[\begin{array}{cccc}3 & 4 & 2 & 1 \\ 5 & 0 & -1 & -2 \\ 0 & 0 & 4 & 0 \\ -1 & 0 & 3 & 3\end{array}\right] \square b) M=[0ab10100aa0b1ba0]M=\left[\begin{array}{llll}0 & a & b & 1 \\ 0 & 1 & 0 & 0 \\ a & a & 0 & b \\ 1 & b & a & 0\end{array}\right] \square c) M=[1320310223010213]M=\left[\begin{array}{llll}1 & 3 & 2 & 0 \\ 3 & 1 & 0 & 2 \\ 2 & 3 & 0 & 1 \\ 0 & 2 & 1 & 3\end{array}\right] \square d) M=[123450a13100b23000c20000d]M=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 0 & a & -1 & 3 & 1 \\ 0 & 0 & b & 2 & 3 \\ 0 & 0 & 0 & c & 2 \\ 0 & 0 & 0 & 0 & d\end{array}\right] \square e) M=[x00000ay0000lpz000mnpx00bcdey0abcdez]M=\left[\begin{array}{llllll}x & 0 & 0 & 0 & 0 & 0 \\ a & y & 0 & 0 & 0 & 0 \\ l & p & z & 0 & 0 & 0 \\ m & n & p & x & 0 & 0 \\ b & c & d & e & y & 0 \\ a & b & c & d & e & z\end{array}\right]

01) Calcule os determinantes das matrizes abaixo utilizando o teorema de Laplace:
a) \( M=\left[\begin{array}{cccc}3 & 4 & 2 & 1 \\ 5 & 0 & -1 & -2 \\ 0 & 0 & 4 & 0 \\ -1 & 0 & 3 & 3\end{array}\right] \) \( \square \)
b) \( M=\left[\begin{array}{llll}0 & a & b & 1 \\ 0 & 1 & 0 & 0 \\ a & a & 0 & b \\ 1 & b & a & 0\end{array}\right] \) \( \square \)
c) \( M=\left[\begin{array}{llll}1 & 3 & 2 & 0 \\ 3 & 1 & 0 & 2 \\ 2 & 3 & 0 & 1 \\ 0 & 2 & 1 & 3\end{array}\right] \) \( \square \)
d) \( M=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 0 & a & -1 & 3 & 1 \\ 0 & 0 & b & 2 & 3 \\ 0 & 0 & 0 & c & 2 \\ 0 & 0 & 0 & 0 & d\end{array}\right] \) \( \square \)
e) \( M=\left[\begin{array}{llllll}x & 0 & 0 & 0 & 0 & 0 \\ a & y & 0 & 0 & 0 & 0 \\ l & p & z & 0 & 0 & 0 \\ m & n & p & x & 0 & 0 \\ b & c & d & e & y & 0 \\ a & b & c & d & e & z\end{array}\right] \)
Envie suas perguntas pelo App
Google Play
App Store
Equipe Meu Guru

Prefere sua atividade resolvida por um tutor especialista?

  • Receba resolvida até o seu prazo
  • Converse com o tutor pelo chat
  • Garantia de 7 dias contra erros