Download the Guru IA app
Android and iOS

Gabriela
1. A Figura 1 apresenta uma casa e a planta do seu telhado, ...
-
A Figura 1 apresenta uma casa e a planta do seu telhado, em que as setas indicam o sentido do escoamento da água de chuva. Um pedreiro precisa fazer a planta do escoamento da água de chuva de um telhado que tem três caídas de água, como apresentado na Figura 2. A figura que representa a planta do telhado da Figura 2 com o escoamento da água de chuva que o pedreiro precisa fazer é:
-
Pergolado é o nome que se dá a um tipo de cobertura projetada por arquitetos, comumente em praças e jardins, para criar um ambiente para pessoas ou plantas, no qual há uma quebra da quantidade de luz, dependendo da posição do sol. É feito como um estrado de vigas iguais, postas paralelas e perfeitamente em fila, como ilustra a figura.
Um arquiteto projeta um pergolado com vãos de 30 cm de distância entre suas vigas, de modo que, no solstício de verão, a trajetória do sol durante o dia seja realizada num plano perpendicular à direção das vigas, e que o sol da tarde, no momento em que seus raios fizerem 30° com a posição a pino, gere a metade da luz que passa no pergolado ao meio-dia.
Para atender à proposta do projeto elaborado pelo arquiteto, as vigas do pergolado devem ser construídas de maneira que a altura, em centímetro, seja a mais próxima possível de:
-
Nos livros Harry Potter, um anagrama do nome do personagem “TOM MARVOLO RIDDLE" gerou a frase "I AM LORD VOLDEMORT”.
Suponha que Harry quisesse formar todos os anagramas da frase “I AM POTTER”, de tal forma que as vogais e consoantes aparecessem sempre intercaladas, e sem considerar o espaçamento entre as letras.
Nessas condições, o número de anagramas formados é dado por:
9!
4! 5!
2 X 4! 5!
9!/2
4! 5!/2
- Um hotel de 3 andares está sendo construído. Cada andar terá 100 quartos. Os quartos serão numerados de 100 a 399 e cada um terá seu número afixado à porta. Cada número será composto por peças individuais, cada uma simbolizando um único algarismo.
Qual a quantidade mínima de peças, simbolizando o algarismo 2, necessárias para identificar o número de todos os quartos?
160
157
130
120
60
-
O técnico de um time de basquete pretende aumentar a estatura média de sua equipe de 1,93 m para, no mínimo, 1,99 m. Para tanto, dentre os 15 jogadores que fazem parte de sua equipe, irá substituir os quatro mais baixos, de estaturas: 1,78 m, 1,82 m, 1,84 m e 1,86 m. Para isso, o técnico contratou um novo jogador de 2,02 m. Os outros três jogadores que ele ainda precisa contratar devem satisfazer à sua necessidade de aumentar a média das estaturas da equipe. Ele fixará a média das estaturas para os três jogadores que ainda precisa contratar dentro do critério inicialmente estabelecido.
Qual deverá ser a média minima das estaturas, em metro, que ele deverá fixar para o grupo de três novos jogadores que ainda irá contratar?
1,96
1,98
2,05
2,06
2,08
- Um grupo sanguíneo, ou tipo sanguíneo, baseia-se na presença ou ausência de dois antígenos, A e B, na superfície das células vermelhas do sangue. Como dois antígenos estão envolvidos, os quatro tipos sanguíneos distintos são:
• Tipo A: apenas o antígeno A está presente; • Tipo B: apenas o antígeno B está presente; • Tipo AB: ambos os antígenos estão presentes; • Tipo O: nenhum dos antígenos está presente.
Disponível em; http://saude.hsw.uol.com.br. Acesso em: 15 abr. 2012 (adaptado).
Foram coletadas amostras de sangue de 200 pessoas e, após análise laboratorial, foi identificado que em 100 amostras está presente o antígeno A, em 110 amostras há presença do antígeno B e em 20 amostras nenhum dos antígenos está presente.
Dessas pessoas que foram submetidas à coleta de sangue, o número das que possuem o tipo sanguíneo A é igual a:
-
Vamos denominar “casas contíguas”, num quadriculado, aquelas que possuem um lado ou um vértice em comum. Assinale o tipo de malha quadriculada em que podemos escrever todos os números naturais consecutivos, a partir do 1, em suas quadrículas, de modo que dois números primos não ocupem casas contíguas:
3x4
4x4
3x6
4x5
3x7
- O proprietário de um apartamento decidiu instalar porcelanato no piso da sala. Essa sala tem formato retangular com 3,2 m de largura e 3,6 m de comprimento. As peças do porcelanato têm formato de um quadrado com lado medindo 80 cm. Esse porcelanato é vendido em dois tipos de caixas, com os preços indicados a seguir.
• Caixas do tipo A: 4 unidades de piso, R35,00;•CaixasdotipoB:3unidadesdepiso,R 27,00.
Na instalação do porcelanato, as peças podem ser recortadas e devem ser assentadas sem espaçamento entre elas, aproveitando-se ao máximo os recortes feitos.
A compra que atende às necessidades do proprietário, proporciona a menor sobra de pisos e resulta no menor preço é:
5 caixas do tipo A.
1 caixa do tipo A e 4 caixas do tipo B.
3 caixas do tipo A e 2 caixas do tipo B.
5 caixas do tipo A e 1 caixa do tipo B.
6 caixas do tipo B.
- Três amigos, André, Bernardo e Carlos, moram em um condomínio fechado de uma cidade. O quadriculado representa a localização das ruas paralelas e perpendiculares, delimitando quadras de mesmo tamanho nesse condomínio, em que nos pontos A, B e C estão localizadas as casas de André, Bernardo e Carlos, respectivamente.
André deseja deslocar-se da sua casa até a casa de Bernardo, sem passar pela casa de Carlos, seguindo ao longo das ruas do condomínio, fazendo sempre deslocamentos para a direita ( → ) ou para cima ( ↑ ), segundo o esquema da figura.
O número de diferentes caminhos que André poderá utilizar para realizar o deslocamento nas condições propostas é:
4
14
17
35
48
- Muitos modelos atuais de veículos possuem computador de bordo. Os computadores informam em uma tela diversas variações de grandezas associadas ao desempenho do carro, dentre elas o consumo médio de combustível. Um veiculo, de um determinado modelo, pode vir munido de um dos dois tipos de computadores de bordo:
• Tipo A: informa a quantidade X de litro de combustível gasto para percorrer 100 quilômetros;
• Tipo B: informa a quantidade de quilômetro que o veiculo é capaz de percorrer com um litro de combustível.
Um veiculo utiliza o computador do Tipo A, e ao final de uma viagem o condutor viu apresentada na tela a informação “X/100”.
Caso o seu veículo utilizasse o computador do Tipo B, o valor informado na tela seria obtido pela operação:
X .100
X/100
100/X
1/X
1 . X
- Azulejo designa peça de cerâmica vitrificada e/ou esmaltada usada, sobretudo, no revestimento de paredes. A origem das técnicas de fabricação de azulejos é oriental, mas sua expansão pela Europa traz consigo uma diversificação de estilos, padrões e usos, que podem ser decorativos, utilitários e arquitetônicos.
Disponível em: www.itaucultural.org.br. Acesso em. 31 jul. 2012.
Azulejos no formato de octógonos regulares serão utilizados para cobrir um painel retangular conforme ilustrado na figura.
Entre os octógonos e na borda lateral dessa área, será necessária a colocação de 15 azulejos de outros formatos para preencher os 15 espaços em branco do painel. Uma loja oferece azulejos nos seguintes formatos:
1 - Triângulo retângulo isósceles; 2 - Triângulo equilátero; 3 - Quadrado.
Os azulejos necessários para o devido preenchimento das áreas em branco desse painel são os de formato:
1 e 2.
1 e 3.
2 e 3.
- Suponha que uma equipe de corrida de automóveis disponha de cinco tipos de pneu (I, II, III, IV, V), em que o fator de eficiência climática EC (indice que fornece o comportamento do pneu em uso, dependendo do clima) é apresentado:
• EC do pneu I: com chuva 6, sem chuva 3; • EC do pneu II: com chuva 7, sem chuva -4; • EC do pneu III: com chuva -2 , sem chuva 10; • EC do pneu IV: com chuva 2, sem chuva 8; • EC do pneu V: com chuva -6 , sem chuva 7.
O coeficiente de rendimento climático (CRC) de um pneu é calculado como a soma dos produtos dos fatores de EC, com ou sem chuva, pelas correspondentes probabilidades de se ter tais condições climáticas: ele é utilizado para determinar qual pneu deve ser selecionado para uma dada corrida, escolhendo-se o pneu que apresentar o maior CRC naquele dia. No dia de certa corrida, a probabilidade de chover era de 70% e o chefe da equipe calculou o CRC de cada um dos cinco tipos de pneu.
O pneu escolhido foi:
I.
II.
III.
IV.
V.
- Um pé de eucalipto em idade adequada para o corte rende, em média, 20 mil folhas de papel A4. A densidade superficial do papel A4, medida pela razão da massa de uma folha desse papel por sua área, é de 75 gramas por metro quadrado, e a área de uma folha de A4 é 0,062 metro quadrado. Disponível em: http://revistagalileu.globo.com. Acesso em: 28 fev. 2013 (adaptado).
Nessas condições, quantos quilogramas de papel rende, em média, um pé de eucalipto?
4 301
1 500
930
267
93
- Uma torneira está gotejando água em um balde com capacidade de 18 litros. No instante atual, o balde se encontra com ocupação de 50% de sua capacidade. A cada segundo caem 5 gotas de água da torneira, e uma gota é formada, em média, por 5 x 10-² mL de água.
Quanto tempo, em hora, será necessário para encher completamente o balde, partindo do instante atual?
2 x 10¹
1 x 10¹
2 x 10-²
1 x 10-²
1 x 10-³
-
A fabricação da Bandeira Nacional deve obedecer ao descrito na Lei n. 5.700, de 1º de setembro de 1971, que trata dos Símbolos Nacionais. No artigo que se refere às dimensões da Bandeira, observa-se:
“Para cálculos das dimensões, será tomada por base a largura, dividindo-a em 14 (quatorze) partes iguais, sendo que cada uma das partes será considerada uma medida ou módulo (M). Os demais requisitos dimensionais seguem o critério abaixo:
I. Comprimento será de vinte módulos (20 M);
II. A distância dos vértices do losango amarelo ao quadro externo será de um módulo e sete décimos (1.7 M);
III. O raio do círculo azul no meio do losango amarelo será de três módulos e meio (3,5 M).”
BRASIL. Lei n. 5.700. de 1º de setembro de 1971.Disponível em: www.planalto.gov.br. Acesso em: 15 set. 2015.
A figura indica as cores da bandeira do Brasil e localiza o quadro externo a que se refere a Lei n. 5.700.
Um torcedor, preparando-se para a Copa do Mundo e dispondo de cortes de tecidos verde (180 cm x 150 cm) e amarelo (o quanto baste), deseja confeccionar a maior Bandeira Nacional possível a partir das medidas do tecido verde.
Qual a medida, em centímetro, do lado do menor quadrado de tecido azul que deverá ser comprado para confecção do círculo da bandeira desejada?
27
32
53
63
90
- No período de fim de ano, o síndico de um condomínio resolveu colocar, em um poste, uma iluminação natalina em formato de cone, lembrando uma árvore de Natal, conforme as figuras 1 e 2.
A árvore deverá ser feita colocando-se mangueiras de iluminação, consideradas segmentos de reta de mesmo comprimento, a partir de um ponto situado a 3 m de altura no poste até um ponto de uma circunferência de fixação, no chão, de tal forma que esta fique dividida em 20 arcos iguais. O poste está fixado no ponto C (centro da circunferência) perpendicularmente ao plano do chão.
Para economizar, ele utilizará mangueiras de iluminação aproveitadas de anos anteriores, que juntas totalizaram pouco mais de 100 m de comprimento, dos quais ele decide usar exatamente 100 m e deixar o restante como reserva.
Para que ele atinja seu objetivo, o raio, em metro, da circunferência deverá ser de:
4,00.
4,87.
5,00.
5,83.
6,26.
-
Um processo de aeração, que consiste na introdução de ar num líquido, acontece do seguinte modo: uma bomba B retira o líquido de um tanque T1 e o faz passar pelo aerador A1, que aumenta o volume do líquido em 15%, e em seguida pelo aerador A2, ganhando novo aumento de volume de 10%. Ao final, ele fica armazenado num tanque T2, de acordo com a figura.
Os tanques T1 e T2 são prismas retos de bases retangulares, sendo que a base de T1 tem comprimento c e largura L, e a base de T2 tem comprimento c/2 e largura 2L.
Para finalizar o processo de aeração sem derramamento do líquido em T2, o responsável deve saber a relação entre a altura da coluna de líquido que já saiu de T1, denotada por x, e a altura da coluna de líquido que chegou a T2, denotada por y.
Disponível em: www.dec.ufcg.edu.br. Acesso em: 21 abr. 2015.
A equação que relaciona as medidas das alturas y e x é dada por:
y = 1,265x
y = 1,250x
y = 1,150x
y = 1,125x
y = x
- Um motociclista planeja realizar uma viagem cujo destino fica a 500 km de sua casa. Sua moto consome 5 litros de gasolina para cada 100 km rodados, e o tanque da moto tem capacidade para 22 litros. Pelo mapa, observou que no trajeto da viagem o último posto disponível para reabastecimento, chamado Estrela, fica a 80 km do seu destino. Ele pretende partir com o tanque da moto cheio e planeja fazer somente duas paradas para reabastecimento, uma na ida e outra na volta, ambas no posto Estrela. No reabastecimento para a viagem de ida, deve considerar também combustível suficiente para se deslocar por 200 km no seu destino.
A quantidade mínima de combustível, em litro, que esse motociclista deve reabastecer no posto Estrela na viagem de ida, que seja suficiente para fazer o segundo reabastecimento, é:
-
Num recipiente com a forma de paralelepípedo reto-retângulo, colocou-se água até a altura de 8 cm e um objeto, que ficou flutuando na superfície da água. Para retirar o objeto de dentro do recipiente, a altura da coluna de água deve ser de, pelo menos, 15 cm. Para a coluna de água chegar até essa altura, é necessário colocar dentro do recipiente bolinhas de volume igual a 6 cm3 cada, que ficarão totalmente submersas.
O número mínimo de bolinhas necessárias para que se possa retirar o objeto que flutua na água, seguindo as instruções dadas, é de:
-
Uma casa de dois andares está sendo projetada. É necessário incluir no projeto a construção de uma escada para o acesso ao segundo andar. Para o cálculo das dimensões dos degraus utilizam-se as regras:
|2h + b - 63,5| ≤ 1,5 e 16 ≤ h ≤ 19,
nas quais h é a altura do degrau (denominada espelho) e b é a profundidade da pisada, como mostra a figura. Por conveniência, escolheu-se a altura do degrau como sendo h = 16. As unidades de h e b estão em centímetro.
Nesse caso, o mais amplo intervalo numérico ao qual a profundidade da pisada (b) deve pertencer, para que as regras sejam satisfeitas é:
30 ≤ b
30 ≤ b ≤ 31,5
30 ≤ b ≤ 33
31,5 ≤ b ≤ 33
b ≤ 33
- Antônio, Joaquim e José são sócios de uma empresa cujo capital é dividido, entre os três, em partes proporcionais a: 4, 6 e 6, respectivamente. Com a intenção de igualar a participação dos três sócios no capital da empresa, Antônio pretende adquirir uma fração do capital de cada um dos outros dois sócios.
A fração do capital de cada sócio que Antônio deverá adquirir é:
1/2
1/3
1/9
2/3
4/3
- Uma loja de materiais de construção vende dois tipos de caixas-d’água: tipo A e tipo B. Ambas têm formato cilíndrico e possuem o mesmo volume, e a altura da caixa-d’água do tipo B é igual a 25% da altura da caixa-d’agua do tipo A.
Se R denota o raio da caixa-d’água do tipo A, então o raio da caixa-d'água do tipo B é:
R/2
2 R
4 R
5 R
16 R
- O fenômeno das manifestações populares de massa traz à discussão como estimar o número de pessoas presentes nesse tipo de evento. Uma metodologia usada é: no momento do ápice do evento, é feita uma foto aérea da via pública principal na área ocupada, bem como das vias afluentes que apresentem aglomerações de pessoas que acessam a via principal. A foto é sobreposta por um mapa virtual das vias, ambos na mesma escala, fazendo-se um esboço geométrico da situação. Em seguida, subdivide-se o espaço total em trechos, quantificando a densidade, da seguinte forma:
• 4 pessoas por metro quadrado, se elas estiverem andando em uma mesma direção;
• 5 pessoas por metro quadrado, se elas estiverem se movimentando sem deixar o local;
• 6 pessoas por metro quadrado, se elas estiverem paradas.
É feito, então, o cálculo do total de pessoas, considerando os diversos trechos, e desconta-se daí 1 000 pessoas para cada carro de som fotografado.
Com essa metodologia, procederam-se aos cálculos para estimar o número de participantes na manifestação cujo esboço geométrico é dado na figura. Há três trechos na via principal: MN, NO e OP, e um trecho numa via afluente da principal: QR .
Obs.: a figura não está em escala (considere as medidas dadas).
Segundo a metodologia descrita, o número estimado de pessoas presentes a essa manifestação foi igual a:
110 000.
104 000.
93 000.
92 000.
87 000.
- Um clube deseja produzir miniaturas em escala do troféu que ganhou no último campeonato. O troféu está representado na Figura 1 e é composto por uma base em formato de um paralelepípedo reto-retângulo de madeira, sobre a qual estão fixadas três hastes verticais que sustentam uma esfera de 30 cm de diâmetro, que fica centralizada sobre a base de madeira. O troféu tem 100 cm de altura, incluída sua base.
A miniatura desse troféu deverá ser instalada no interior de uma caixa de vidro, em formato de paralelepípedo reto-retângulo, cujas dimensões internas de sua base estão indicadas na Figura 2, de modo que a base do troféu seja colada na base da caixa e distante das paredes laterais da caixa de vidro em pelo menos 1 cm. Deve ainda haver uma distância de exatos 2 cm entre o topo da esfera e a tampa dessa caixa de vidro. Nessas condições deseja-se fazer a maior miniatura possível.
A medida da altura, em centímetro, dessa caixa de vidro deverá ser igual a:
-
A caixa-d'água de um edifício terá a forma de um paralelepípedo retângulo reto com volume igual a 28 080 litros. Em uma maquete que representa o edifício, a caixa-d’água tem dimensões 2 cm x 3,51 cm x 4 cm.
Dado: 1 dm³ = 1 L.
A escala usada pelo arquiteto foi:
1 : 10
1 : 100
1 : 1 000
1 : 10 000
1 : 100 000
- Enquanto um ser está vivo, a quantidade de carbono 14 nele existente não se altera. Quando ele morre, essa quantidade vai diminuindo. Sabe-se que a meia-vida do carbono 14 é de 5 730 anos, ou seja, num fóssil de um organismo que morreu há 5 730 anos haverá metade do carbono 14 que existia quando ele estava vivo. Assim, cientistas e arqueólogos usam a seguinte fórmula para saber a idade de um fóssil encontrado: em que t é o tempo, medido em ano, Q(f) é a quantidade de carbono 14 medida no instante t e Q0 é a quantidade de carbono 14 no ser vivo correspondente.
Um grupo de arqueólogos, numa de suas expedições, encontrou 5 fósseis de espécies conhecidas e mediram a quantidade de carbono 14 neles existente. Na tabela temos esses valores juntamente com a quantidade de carbono 14 nas referidas espécies vivas.
O fóssil mais antigo encontrado nessa expedição foi:
Reformular cada pergunta, com outras respostas, e valores fechados, estilo Enem. Também colocar imagens naquelas que forem necessário.
-
A Figura 1 apresenta uma casa e a planta do seu telhado, em que as setas indicam o sentido do escoamento da água de chuva. Um pedreiro precisa fazer a planta do escoamento da água de chuva de um telhado que tem três caídas de água, como apresentado na Figura 2. A figura que representa a planta do telhado da Figura 2 com o escoamento da água de chuva que o pedreiro precisa fazer é:
-
Pergolado é o nome que se dá a um tipo de cobertura projetada por arquitetos, comumente em praças e jardins, para criar um ambiente para pessoas ou plantas, no qual há uma quebra da quantidade de luz, dependendo da posição do sol. É feito como um estrado de vigas iguais, postas paralelas e perfeitamente em fila, como ilustra a figura.
Um arquiteto projeta um pergolado com vãos de 30 cm de distância entre suas vigas, de modo que, no solstício de verão, a trajetória do sol durante o dia seja realizada num plano perpendicular à direção das vigas, e que o sol da tarde, no momento em que seus raios fizerem 30° com a posição a pino, gere a metade da luz que passa no pergolado ao meio-dia.
Para atender à proposta do projeto elaborado pelo arquiteto, as vigas do pergolado devem ser construídas de maneira que a altura, em centímetro, seja a mais próxima possível de:
-
Nos livros Harry Potter, um anagrama do nome do personagem “TOM MARVOLO RIDDLE" gerou a frase "I AM LORD VOLDEMORT”.
Suponha que Harry quisesse formar todos os anagramas da frase “I AM POTTER”, de tal forma que as vogais e consoantes aparecessem sempre intercaladas, e sem considerar o espaçamento entre as letras.
Nessas condições, o número de anagramas formados é dado por:
9!
4! 5!
2 X 4! 5!
9!/2
4! 5!/2
- Um hotel de 3 andares está sendo construído. Cada andar terá 100 quartos. Os quartos serão numerados de 100 a 399 e cada um terá seu número afixado à porta. Cada número será composto por peças individuais, cada uma simbolizando um único algarismo. Qual a quantidade mínima de peças, simbolizando o algarismo 2, necessárias para identificar o número de todos os quartos?
160
157
130
120
60
-
O técnico de um time de basquete pretende aumentar a estatura média de sua equipe de 1,93 m para, no mínimo, 1,99 m. Para tanto, dentre os 15 jogadores que fazem parte de sua equipe, irá substituir os quatro mais baixos, de estaturas: 1,78 m, 1,82 m, 1,84 m e 1,86 m. Para isso, o técnico contratou um novo jogador de 2,02 m. Os outros três jogadores que ele ainda precisa contratar devem satisfazer à sua necessidade de aumentar a média das estaturas da equipe. Ele fixará a média das estaturas para os três jogadores que ainda precisa contratar dentro do critério inicialmente estabelecido.
Qual deverá ser a média minima das estaturas, em metro, que ele deverá fixar para o grupo de três novos jogadores que ainda irá contratar?
1,96
1,98
2,05
2,06
2,08
- Um grupo sanguíneo, ou tipo sanguíneo, baseia-se na presença ou ausência de dois antígenos, A e B, na superfície das células vermelhas do sangue. Como dois antígenos estão envolvidos, os quatro tipos sanguíneos distintos são: • Tipo A: apenas o antígeno A está presente; • Tipo B: apenas o antígeno B está presente; • Tipo AB: ambos os antígenos estão presentes; • Tipo O: nenhum dos antígenos está presente. Disponível em; http://saude.hsw.uol.com.br. Acesso em: 15 abr. 2012 (adaptado).
Foram coletadas amostras de sangue de 200 pessoas e, após análise laboratorial, foi identificado que em 100 amostras está presente o antígeno A, em 110 amostras há presença do antígeno B e em 20 amostras nenhum dos antígenos está presente.
Dessas pessoas que foram submetidas à coleta de sangue, o número das que possuem o tipo sanguíneo A é igual a:
-
Vamos denominar “casas contíguas”, num quadriculado, aquelas que possuem um lado ou um vértice em comum. Assinale o tipo de malha quadriculada em que podemos escrever todos os números naturais consecutivos, a partir do 1, em suas quadrículas, de modo que dois números primos não ocupem casas contíguas:
3x4
4x4
3x6
4x5
3x7
- O proprietário de um apartamento decidiu instalar porcelanato no piso da sala. Essa sala tem formato retangular com 3,2 m de largura e 3,6 m de comprimento. As peças do porcelanato têm formato de um quadrado com lado medindo 80 cm. Esse porcelanato é vendido em dois tipos de caixas, com os preços indicados a seguir. • Caixas do tipo A: 4 unidades de piso, R35,00;•CaixasdotipoB:3unidadesdepiso,R 27,00. Na instalação do porcelanato, as peças podem ser recortadas e devem ser assentadas sem espaçamento entre elas, aproveitando-se ao máximo os recortes feitos. A compra que atende às necessidades do proprietário, proporciona a menor sobra de pisos e resulta no menor preço é:
5 caixas do tipo A.
1 caixa do tipo A e 4 caixas do tipo B.
3 caixas do tipo A e 2 caixas do tipo B.
5 caixas do tipo A e 1 caixa do tipo B.
6 caixas do tipo B.
- Três amigos, André, Bernardo e Carlos, moram em um condomínio fechado de uma cidade. O quadriculado representa a localização das ruas paralelas e perpendiculares, delimitando quadras de mesmo tamanho nesse condomínio, em que nos pontos A, B e C estão localizadas as casas de André, Bernardo e Carlos, respectivamente.
André deseja deslocar-se da sua casa até a casa de Bernardo, sem passar pela casa de Carlos, seguindo ao longo das ruas do condomínio, fazendo sempre deslocamentos para a direita ( → ) ou para cima ( ↑ ), segundo o esquema da figura.
O número de diferentes caminhos que André poderá utilizar para realizar o deslocamento nas condições propostas é:
4
14
17
35
48
- Muitos modelos atuais de veículos possuem computador de bordo. Os computadores informam em uma tela diversas variações de grandezas associadas ao desempenho do carro, dentre elas o consumo médio de combustível. Um veiculo, de um determinado modelo, pode vir munido de um dos dois tipos de computadores de bordo:
• Tipo A: informa a quantidade X de litro de combustível gasto para percorrer 100 quilômetros;
• Tipo B: informa a quantidade de quilômetro que o veiculo é capaz de percorrer com um litro de combustível.
Um veiculo utiliza o computador do Tipo A, e ao final de uma viagem o condutor viu apresentada na tela a informação “X/100”.
Caso o seu veículo utilizasse o computador do Tipo B, o valor informado na tela seria obtido pela operação:
X .100
X/100
100/X
1/X
1 . X
- Azulejo designa peça de cerâmica vitrificada e/ou esmaltada usada, sobretudo, no revestimento de paredes. A origem das técnicas de fabricação de azulejos é oriental, mas sua expansão pela Europa traz consigo uma diversificação de estilos, padrões e usos, que podem ser decorativos, utilitários e arquitetônicos. Disponível em: www.itaucultural.org.br. Acesso em. 31 jul. 2012.
Azulejos no formato de octógonos regulares serão utilizados para cobrir um painel retangular conforme ilustrado na figura.
Entre os octógonos e na borda lateral dessa área, será necessária a colocação de 15 azulejos de outros formatos para preencher os 15 espaços em branco do painel. Uma loja oferece azulejos nos seguintes formatos: 1 - Triângulo retângulo isósceles; 2 - Triângulo equilátero; 3 - Quadrado. Os azulejos necessários para o devido preenchimento das áreas em branco desse painel são os de formato:
1 e 2.
1 e 3.
2 e 3.
- Suponha que uma equipe de corrida de automóveis disponha de cinco tipos de pneu (I, II, III, IV, V), em que o fator de eficiência climática EC (indice que fornece o comportamento do pneu em uso, dependendo do clima) é apresentado: • EC do pneu I: com chuva 6, sem chuva 3; • EC do pneu II: com chuva 7, sem chuva -4; • EC do pneu III: com chuva -2 , sem chuva 10; • EC do pneu IV: com chuva 2, sem chuva 8; • EC do pneu V: com chuva -6 , sem chuva 7.
O coeficiente de rendimento climático (CRC) de um pneu é calculado como a soma dos produtos dos fatores de EC, com ou sem chuva, pelas correspondentes probabilidades de se ter tais condições climáticas: ele é utilizado para determinar qual pneu deve ser selecionado para uma dada corrida, escolhendo-se o pneu que apresentar o maior CRC naquele dia. No dia de certa corrida, a probabilidade de chover era de 70% e o chefe da equipe calculou o CRC de cada um dos cinco tipos de pneu. O pneu escolhido foi:
I.
II.
III.
IV.
V.
- Um pé de eucalipto em idade adequada para o corte rende, em média, 20 mil folhas de papel A4. A densidade superficial do papel A4, medida pela razão da massa de uma folha desse papel por sua área, é de 75 gramas por metro quadrado, e a área de uma folha de A4 é 0,062 metro quadrado. Disponível em: http://revistagalileu.globo.com. Acesso em: 28 fev. 2013 (adaptado).
Nessas condições, quantos quilogramas de papel rende, em média, um pé de eucalipto?
4 301
1 500
930
267
93
- Uma torneira está gotejando água em um balde com capacidade de 18 litros. No instante atual, o balde se encontra com ocupação de 50% de sua capacidade. A cada segundo caem 5 gotas de água da torneira, e uma gota é formada, em média, por 5 x 10-² mL de água.
Quanto tempo, em hora, será necessário para encher completamente o balde, partindo do instante atual?
2 x 10¹
1 x 10¹
2 x 10-²
1 x 10-²
1 x 10-³
-
A fabricação da Bandeira Nacional deve obedecer ao descrito na Lei n. 5.700, de 1º de setembro de 1971, que trata dos Símbolos Nacionais. No artigo que se refere às dimensões da Bandeira, observa-se: “Para cálculos das dimensões, será tomada por base a largura, dividindo-a em 14 (quatorze) partes iguais, sendo que cada uma das partes será considerada uma medida ou módulo (M). Os demais requisitos dimensionais seguem o critério abaixo: I. Comprimento será de vinte módulos (20 M); II. A distância dos vértices do losango amarelo ao quadro externo será de um módulo e sete décimos (1.7 M); III. O raio do círculo azul no meio do losango amarelo será de três módulos e meio (3,5 M).” BRASIL. Lei n. 5.700. de 1º de setembro de 1971.Disponível em: www.planalto.gov.br. Acesso em: 15 set. 2015. A figura indica as cores da bandeira do Brasil e localiza o quadro externo a que se refere a Lei n. 5.700.
Um torcedor, preparando-se para a Copa do Mundo e dispondo de cortes de tecidos verde (180 cm x 150 cm) e amarelo (o quanto baste), deseja confeccionar a maior Bandeira Nacional possível a partir das medidas do tecido verde.
Qual a medida, em centímetro, do lado do menor quadrado de tecido azul que deverá ser comprado para confecção do círculo da bandeira desejada?
27
32
53
63
90
- No período de fim de ano, o síndico de um condomínio resolveu colocar, em um poste, uma iluminação natalina em formato de cone, lembrando uma árvore de Natal, conforme as figuras 1 e 2.
A árvore deverá ser feita colocando-se mangueiras de iluminação, consideradas segmentos de reta de mesmo comprimento, a partir de um ponto situado a 3 m de altura no poste até um ponto de uma circunferência de fixação, no chão, de tal forma que esta fique dividida em 20 arcos iguais. O poste está fixado no ponto C (centro da circunferência) perpendicularmente ao plano do chão.
Para economizar, ele utilizará mangueiras de iluminação aproveitadas de anos anteriores, que juntas totalizaram pouco mais de 100 m de comprimento, dos quais ele decide usar exatamente 100 m e deixar o restante como reserva.
Para que ele atinja seu objetivo, o raio, em metro, da circunferência deverá ser de:
4,00.
4,87.
5,00.
5,83.
6,26.
-
Um processo de aeração, que consiste na introdução de ar num líquido, acontece do seguinte modo: uma bomba B retira o líquido de um tanque T1 e o faz passar pelo aerador A1, que aumenta o volume do líquido em 15%, e em seguida pelo aerador A2, ganhando novo aumento de volume de 10%. Ao final, ele fica armazenado num tanque T2, de acordo com a figura.
Os tanques T1 e T2 são prismas retos de bases retangulares, sendo que a base de T1 tem comprimento c e largura L, e a base de T2 tem comprimento c/2 e largura 2L. Para finalizar o processo de aeração sem derramamento do líquido em T2, o responsável deve saber a relação entre a altura da coluna de líquido que já saiu de T1, denotada por x, e a altura da coluna de líquido que chegou a T2, denotada por y.
Disponível em: www.dec.ufcg.edu.br. Acesso em: 21 abr. 2015.
A equação que relaciona as medidas das alturas y e x é dada por:
y = 1,265x
y = 1,250x
y = 1,150x
y = 1,125x
y = x
- Um motociclista planeja realizar uma viagem cujo destino fica a 500 km de sua casa. Sua moto consome 5 litros de gasolina para cada 100 km rodados, e o tanque da moto tem capacidade para 22 litros. Pelo mapa, observou que no trajeto da viagem o último posto disponível para reabastecimento, chamado Estrela, fica a 80 km do seu destino. Ele pretende partir com o tanque da moto cheio e planeja fazer somente duas paradas para reabastecimento, uma na ida e outra na volta, ambas no posto Estrela. No reabastecimento para a viagem de ida, deve considerar também combustível suficiente para se deslocar por 200 km no seu destino.
A quantidade mínima de combustível, em litro, que esse motociclista deve reabastecer no posto Estrela na viagem de ida, que seja suficiente para fazer o segundo reabastecimento, é:
-
Num recipiente com a forma de paralelepípedo reto-retângulo, colocou-se água até a altura de 8 cm e um objeto, que ficou flutuando na superfície da água. Para retirar o objeto de dentro do recipiente, a altura da coluna de água deve ser de, pelo menos, 15 cm. Para a coluna de água chegar até essa altura, é necessário colocar dentro do recipiente bolinhas de volume igual a 6 cm3 cada, que ficarão totalmente submersas.
O número mínimo de bolinhas necessárias para que se possa retirar o objeto que flutua na água, seguindo as instruções dadas, é de:
-
Uma casa de dois andares está sendo projetada. É necessário incluir no projeto a construção de uma escada para o acesso ao segundo andar. Para o cálculo das dimensões dos degraus utilizam-se as regras: |2h + b - 63,5| ≤ 1,5 e 16 ≤ h ≤ 19,
nas quais h é a altura do degrau (denominada espelho) e b é a profundidade da pisada, como mostra a figura. Por conveniência, escolheu-se a altura do degrau como sendo h = 16. As unidades de h e b estão em centímetro.
Nesse caso, o mais amplo intervalo numérico ao qual a profundidade da pisada (b) deve pertencer, para que as regras sejam satisfeitas é:
30 ≤ b
30 ≤ b ≤ 31,5
30 ≤ b ≤ 33
31,5 ≤ b ≤ 33
b ≤ 33
- Antônio, Joaquim e José são sócios de uma empresa cujo capital é dividido, entre os três, em partes proporcionais a: 4, 6 e 6, respectivamente. Com a intenção de igualar a participação dos três sócios no capital da empresa, Antônio pretende adquirir uma fração do capital de cada um dos outros dois sócios.
A fração do capital de cada sócio que Antônio deverá adquirir é:
1/2
1/3
1/9
2/3
4/3
- Uma loja de materiais de construção vende dois tipos de caixas-d’água: tipo A e tipo B. Ambas têm formato cilíndrico e possuem o mesmo volume, e a altura da caixa-d’água do tipo B é igual a 25% da altura da caixa-d’agua do tipo A.
Se R denota o raio da caixa-d’água do tipo A, então o raio da caixa-d'água do tipo B é:
R/2
2 R
4 R
5 R
16 R
- O fenômeno das manifestações populares de massa traz à discussão como estimar o número de pessoas presentes nesse tipo de evento. Uma metodologia usada é: no momento do ápice do evento, é feita uma foto aérea da via pública principal na área ocupada, bem como das vias afluentes que apresentem aglomerações de pessoas que acessam a via principal. A foto é sobreposta por um mapa virtual das vias, ambos na mesma escala, fazendo-se um esboço geométrico da situação. Em seguida, subdivide-se o espaço total em trechos, quantificando a densidade, da seguinte forma:
• 4 pessoas por metro quadrado, se elas estiverem andando em uma mesma direção; • 5 pessoas por metro quadrado, se elas estiverem se movimentando sem deixar o local; • 6 pessoas por metro quadrado, se elas estiverem paradas.
É feito, então, o cálculo do total de pessoas, considerando os diversos trechos, e desconta-se daí 1 000 pessoas para cada carro de som fotografado. Com essa metodologia, procederam-se aos cálculos para estimar o número de participantes na manifestação cujo esboço geométrico é dado na figura. Há três trechos na via principal: MN, NO e OP, e um trecho numa via afluente da principal: QR .
Obs.: a figura não está em escala (considere as medidas dadas). Segundo a metodologia descrita, o número estimado de pessoas presentes a essa manifestação foi igual a:
110 000.
104 000.
93 000.
92 000.
87 000.
- Um clube deseja produzir miniaturas em escala do troféu que ganhou no último campeonato. O troféu está representado na Figura 1 e é composto por uma base em formato de um paralelepípedo reto-retângulo de madeira, sobre a qual estão fixadas três hastes verticais que sustentam uma esfera de 30 cm de diâmetro, que fica centralizada sobre a base de madeira. O troféu tem 100 cm de altura, incluída sua base.
A miniatura desse troféu deverá ser instalada no interior de uma caixa de vidro, em formato de paralelepípedo reto-retângulo, cujas dimensões internas de sua base estão indicadas na Figura 2, de modo que a base do troféu seja colada na base da caixa e distante das paredes laterais da caixa de vidro em pelo menos 1 cm. Deve ainda haver uma distância de exatos 2 cm entre o topo da esfera e a tampa dessa caixa de vidro. Nessas condições deseja-se fazer a maior miniatura possível. A medida da altura, em centímetro, dessa caixa de vidro deverá ser igual a:
-
A caixa-d'água de um edifício terá a forma de um paralelepípedo retângulo reto com volume igual a 28 080 litros. Em uma maquete que representa o edifício, a caixa-d’água tem dimensões 2 cm x 3,51 cm x 4 cm. Dado: 1 dm³ = 1 L. A escala usada pelo arquiteto foi:
1 : 10
1 : 100
1 : 1 000
1 : 10 000
1 : 100 000
- Enquanto um ser está vivo, a quantidade de carbono 14 nele existente não se altera. Quando ele morre, essa quantidade vai diminuindo. Sabe-se que a meia-vida do carbono 14 é de 5 730 anos, ou seja, num fóssil de um organismo que morreu há 5 730 anos haverá metade do carbono 14 que existia quando ele estava vivo. Assim, cientistas e arqueólogos usam a seguinte fórmula para saber a idade de um fóssil encontrado: em que t é o tempo, medido em ano, Q(f) é a quantidade de carbono 14 medida no instante t e Q0 é a quantidade de carbono 14 no ser vivo correspondente.
Um grupo de arqueólogos, numa de suas expedições, encontrou 5 fósseis de espécies conhecidas e mediram a quantidade de carbono 14 neles existente. Na tabela temos esses valores juntamente com a quantidade de carbono 14 nas referidas espécies vivas.
O fóssil mais antigo encontrado nessa expedição foi:
Reformular cada pergunta, com outras respostas, e valores fechados, estilo Enem. Também colocar imagens naquelas que forem necessário.