- Calclule os seguintes limites no infinito.
(a) limx→+∞(x4+3x+2)
(b) limx→+∞(x4−3x+2)
(c) limx→+∞(3x3+2x+1)
(d) limx→+∞(3x3+2x+1)
(e) limx→+∞(5−4x+x2−x5)
(f) limx→+∞(5−4x+x2−x5)
(g) limx→+∞6x3+25x3−6x+1
(h) limx→+∞6x3+25x3−6x+1
(i) limx→+∞x+3x+1
(j) limx→+∞(x−x+3)
(k) limx→+∞(x−x+3)
(l) limx→+∞(x−x2+3)
(m) limx→+∞(2x−x3+3)
(n) limx→−∞3+2x5−x
(o) limx→−∞1−x2−x
RESPOSTAS
| (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ∞ | ∞ | ∞ | -∞ | -∞ | ∞ | 5/6 | 5/6 | 0 | ∞ | 0 | -∞ | -∞ | -1/2 | -1 |
Limites Fundamentais
- Calcule os limites.
(a) limx→02xsen(3x)
(d) limx→0x21−cos(x)
(g) limx→0x⋅sen(x)1−cos(x)
(j) limx→0x1+sen(x)−1−x
(b) limx→0sen(7x)sen(10x)
(e) limx→0x21−sec(x)
(h) limx→03x27−7cos2(x)
(k) limx→∞x32x3−x+sen(x)
(c) limx→02xtg(3x)
(f) limx→0x1−cos(x)
(i) limx→x0x−x0sen(x)
(l) limx→0xsen(x+a)−sen(a)
3- Calcule os limites:
(a) limx→∞(1+x1)x
(c) limx→∞(1+x1)3x
(e) limx→∞(1+x1)x2
(g) limx→∞(x+1x)x
(b) limx→∞(1−x1)x
(d) limx→∞(1−x1)5x
(f) limx→∞(x+1x)x+1
(h) limx→∞(x+5x)2x+3
- Determine:
(a) limx→02xex−1
(b) limx→∞x31/x−3
(c) limx→3x−3x4−64
(d) limx→∞x4−ex