Download the Guru IA app

Android and iOS

Foto de perfil

Roger

SENT BY THE APP
Estudos Gerais04/14/2025

1) Calcule, se existirem, os seguintes limites: a) lim (x→1...

  1. Calcule, se existirem, os seguintes limites:

a) lim (x→1) (x²−1)/(x²−1) b) lim (x→2) (x³−8)/(x−2) c) lim (x→0) x/(x+3) d) lim (x→0) (x³+7x)/x e) lim (x→1) (x²−x)/(x²+2x−3) f) lim (x→2) (x²−5x+6)/(x²−12x+20) g) lim (x→0) ((4+x)²−16)/x h) lim (x→3) (x³−27)/(x²−5x+6) i) lim (x→2) (x²−3x−2)/(3x−6) j) lim (x→1) √(x²−1)/(x−1) k) lim (x→0) (x²+9−3)/x² l) lim (x→4) (x³+5x+4)/(x²+3x−4) m) lim (x→∞) (x⁴−x²+3x+1)/(7x³−3x⁴) n) lim (x→∞) (10x²−3x+4)/(3x²−5x+1) o) lim (x→∞) (x²−3x+1)/(2x²+1) p) lim (x→∞) (x²+3x+1)/x q) lim (x→∞) (x²−1)/(x−1) r) lim (x→∞) (2x⁴+3x²+2x+1)/(4−x²) s) lim (x→∞) (x²+3x−1)/(x³−2) t) lim (x→0) sen(9x)/sen(x) u) lim (x→0) sen(2x)/sen(4x) v) lim (x→0) (sen²x)/x² w) lim (x→0) tg(5x)/sen(7x) x) lim (x→∞) (x/(x+1))^x y) lim (x→∞) (1+(10/x))^x

  1. Seja f(x) = 7 + √(x−1). Calcule, caso exista, lim (x→1-) f(x), lim (x→1+) f(x) e lim (x→1) f(x).

  2. Seja f(x) = { |x|, se x < 4; −4x + 20, se x > 4. Calcule, se existirem, lim (x→4-) f(x), lim (x→4+) f(x) e lim (x→4) f(x).

  3. Seja f(x) = { x², se x < 1; −1, se x = 1; x + 1, se x > 1. Calcule, se existirem, lim (x→1-) f(x), lim (x→1+) f(x) e lim (x→1) f(x).

  4. Dada a função f(x) = |x−2|/(x−2), determine lim (x→2-) f(x) e lim (x→2+) f(x).

1) Calcule, se existirem, os seguintes limites:

a) lim (x→1) (x²−1)/(x²−1)
b) lim (x→2) (x³−8)/(x−2)
c) lim (x→0) x/(x+3)
d) lim (x→0) (x³+7x)/x
e) lim (x→1) (x²−x)/(x²+2x−3)
f) lim (x→2) (x²−5x+6)/(x²−12x+20)
g) lim (x→0) ((4+x)²−16)/x
h) lim (x→3) (x³−27)/(x²−5x+6)
i) lim (x→2) (x²−3x−2)/(3x−6)
j) lim (x→1) √(x²−1)/(x−1)
k) lim (x→0) (x²+9−3)/x²
l) lim (x→4) (x³+5x+4)/(x²+3x−4)
m) lim (x→∞) (x⁴−x²+3x+1)/(7x³−3x⁴)
n) lim (x→∞) (10x²−3x+4)/(3x²−5x+1)
o) lim (x→∞) (x²−3x+1)/(2x²+1)
p) lim (x→∞) (x²+3x+1)/x
q) lim (x→∞) (x²−1)/(x−1)
r) lim (x→∞) (2x⁴+3x²+2x+1)/(4−x²)
s) lim (x→∞) (x²+3x−1)/(x³−2)
t) lim (x→0) sen(9x)/sen(x)
u) lim (x→0) sen(2x)/sen(4x)
v) lim (x→0) (sen²x)/x²
w) lim (x→0) tg(5x)/sen(7x)
x) lim (x→∞) (x/(x+1))^x
y) lim (x→∞) (1+(10/x))^x

2) Seja f(x) = 7 + √(x−1). Calcule, caso exista, lim (x→1-) f(x), lim (x→1+) f(x) e lim (x→1) f(x).

3) Seja f(x) = { |x|, se x < 4; −4x + 20, se x > 4. Calcule, se existirem, lim (x→4-) f(x), lim (x→4+) f(x) e lim (x→4) f(x).

4) Seja f(x) = { x², se x < 1; −1, se x = 1; x + 1, se x > 1. Calcule, se existirem, lim (x→1-) f(x), lim (x→1+) f(x) e lim (x→1) f(x).

5) Dada a função f(x) = |x−2|/(x−2), determine lim (x→2-) f(x) e lim (x→2+) f(x).
Send your questions through the App
Google Play
App Store
Equipe Meu Guru

Do you prefer an expert tutor to solve your activity?

  • Receive your completed work by the deadline
  • Chat with the tutor.
  • 7-day error guarantee