- Mostrar que existe o limite de f(x) = 4x - 5 em x = 3 e que é igual a 7.
- Mostrar que lim[x->3] x^2 = 9
Calcule os seguintes limites usando as propriedades dos limites:
(a) lim[x->0](3 - 7x - 5x^2)
(b) lim[x->-1](-x^5 + 6x^4 + 2)
(c) lim[x->1]((x + 4)^3 . (x + 2) - 1)
(d) lim[x->2] x + 4
(e) lim[x->1] 3x - 1
(f) lim[t->2] t^2 - 5t + 6
(g) lim[x->4] 3√(2x + 3)
(h) lim[x->√2] 2x^2 - x / 3x
(i) lim[x->π/2][2 . sen x - cos x + cotg x]
- Dadas as integrais abaixo, calcule cada uma delas:
(a) ∫[0 to 4] (3x^2 - 2x + 1) dx
(b) ∫[0 to ∞] 1/√(x + 1) dx
(c) ∫[0 to 3] e^x dx
(d) ∫[0 to 2] x ln(x) dx
(e) ∫[1 to ∞] 1/x^2 dx
(f) ∫[0 to ∞] e^(-x) dx
(g) ∫[0 to 1] 1/√(1 - x^2) dx
(h) ∫[0 to 2] xe^(x^2) dx
(i) ∫[0 to 1] x cos(x) dx
(j) ∫[0 to ∞] sin(x)/x dx
(k) ∫[0 to ∞] sin(x) dx
(l) ∫[0 to ∞] e^(-x) dx
(m) ∫[1 to 4] 2x/(x^2 + 1) dx
(n) ∫[0 to π/2] e^(x) sin(x) dx
(o) ∫[0 to π/2] tan(x) dx
(p) ∫[1 to ∞] 1/x dx
(q) ∫[0 to 1] 1/(1 - x^2)^2 dx
(r) ∫[0 to π] cos^2(x) dx
(s) ∫[0 to 1] 1/√(1 - x^2) dx
(t) ∫[1 to 2] ln(x) dx