2-26 Determine se as séries são absolutamente convergentes (AC), condicionalmente convergentes (CC) ou divergentes (D).
- ∑_{n=1}^{∞}
n² / 2ⁿ
- ∑_{n=1}^{∞}
(-10)ⁿ / n!
- ∑_{n=1}^{∞}
(-1)ⁿ / n⁴
- ∑_{n=1}^{∞}
(-1)ⁿ⁺¹ / √n
- ∑_{n=1}^{∞}
(-1)ⁿ-1 2ⁿ / n⁴
- ∑_{n=1}^{∞}
k (2/3)ᵏ
- ∑_{n=1}^{∞}
e⁻ⁿ n!
- ∑_{n=1}^{∞}
(-1)ⁿ (1,1)ⁿ / n⁴
- ∑_{n=1}^{∞}
(-1)ⁿ(n-1)n / n² + 1
- ∑_{n=1}^{∞}
(-1)ⁿ e¹/n / n³
- ∑_{n=1}^{∞}
sin(4n) / 4ⁿ
- ∑_{n=1}^{∞}
10ⁿ / n⁴ 2n+1
- ∑_{n=1}^{∞}
(-1)ⁿ⁺¹ n² 2ⁿ / n!
- ∑_{n=1}^{∞}
(-1)ⁿ arctan n / n²
- ∑_{n=1}^{∞}
3 - cos n / n²/3 - 2
- ∑_{n=1}^{∞}
2·4·6·8···2n / n!
- ∑_{n=1}^{∞}
(-1)ⁿ 2ⁿ n! / 5·8·11···(3n + 2)