a) lim (x→1) (x−1)/(x²−1)
b) lim (x→2) (x³−8)/(x²−2)
c) lim (x→−3) (x−3)/(x²+6x+9)
d) lim (x→0) x³+7x/x²−x
e) lim (x→1) (x²+2x−3)/(x−1)
f) lim (x→2) (x²−5x+6)/(x²−12x+20)
g) lim (x→0) x/(4+x)²−16
h) lim (x→3) (x³−27)/(x³−2x²−5x+6)
i) lim (x→2) (x³−2x²)/(3x−6)
j) lim (x→1) √(x²−1)/(x−1)
k) lim (x→0) √(x²+9)−3/x²
l) lim (x→4) (x²+5x+4)/(x²+3x−4)
m) lim (x→∞) (x⁴−x²+3x+1)/(7x³−3x²)
n) lim (x→∞) (10x²−3x+4)/(3x²−5x+1)
o) lim (x→∞) (4ⁿ−3²ⁿ)/(2²ⁿ+1)
p) lim (x→∞) (2x²+3x+1)/x
q) lim (x→∞) x²−1/(x−1)
r) lim (x→∞) (2x³+3x²+2x+1)/(4−x²)
s) lim (x→∞) (x²+3x−1)/(x³−2)
t) lim (x→0) sen(9x)/x
u) lim (x→0) sen(2x)/sen(4x)
v) lim (x→0) sen²x/x²
w) lim (x→0) tg5x/sen7x
x) lim (x→∞) (x/(1+1/x))
y) lim (x→∞) (1+(10/x))^x
2) Seja f(x) = 7 + √(x − 1). Calcule, caso exista, lim (x→1⁺) f(x), lim (x→1⁻) f(x) e lim (x→1) f(x).
3) Seja f(x) = {|x|, se x < 4; −4x + 20, se x > 4}. Calcule, se existirem, lim (x→4⁻) f(x), lim (x→4⁺) f(x) e lim (x→4) f(x).
4) Seja f(x) = {x², se x < 1; −1, se x = 1; x + 1, se x > 1}. Calcule, se existirem, lim (x→1⁻) f(x), lim (x→1⁺) f(x) e lim (x→1) f(x).
5) Dada a função f(x) = |x−2|/(x−2), determine lim (x→2⁻) f(x) e lim (x→2⁺) f(x).