Download the Guru IA app

Android and iOS

Foto de perfil

Luciano

Estudos Gerais03/16/2025

f(t) = cos(wt) L(f(t)) = \int_0^\infty (cos(wt)e^{-st}) dt w...

f(t) = cos(wt) L(f(t)) = \int_0^\infty (cos(wt)e^{-st}) dt w = cos(wt) => dt = -\frac{1}{w}e^{-st}dt \int f = e^{-st} v = -\frac{1}{w}e^{-st}cos(wt) dt \int e^{-st} (-\frac{1}{w}e^{-st}sin(wt)) dt \int e^{-st} (-\frac{1}{\lambda}e^{-st}) dt \int e^{-st} (\frac{w^2}{\lambda^2}) \int_0^\infty e^{-st}cos(wt)dt \int_0^\infty e^{-st}cos(wt)dt = \int_0^\infty e^{-st} e^{-wt} dt \int_0^\infty e^{-st} e^{-mt} dt = \int_0^\infty e^{-nt} dt \frac{M}{\lambda^2 + w^2} \int_0^\infty cos(wt)e^{-nt} dt

Que tipo de cálculo é esse e esta certo ?

f(t) = cos(wt)
L(f(t)) = \int_0^\infty (cos(wt)e^{-st}) dt
w = cos(wt) => dt = -\frac{1}{w}e^{-st}dt
\int f = e^{-st} v = -\frac{1}{w}e^{-st}cos(wt) dt
\int e^{-st} (-\frac{1}{w}e^{-st}sin(wt)) dt
\int e^{-st} (-\frac{1}{\lambda}e^{-st}) dt
\int e^{-st} (\frac{w^2}{\lambda^2}) \int_0^\infty e^{-st}cos(wt)dt
\int_0^\infty e^{-st}cos(wt)dt = \int_0^\infty e^{-st} e^{-wt} dt
\int_0^\infty e^{-st} e^{-mt} dt = \int_0^\infty e^{-nt} dt
\frac{M}{\lambda^2 + w^2} \int_0^\infty cos(wt)e^{-nt} dt
Send your questions through the App
Equipe Meu Guru

Do you prefer an expert tutor to solve your activity?

  • Receive your completed work by the deadline
  • Chat with the tutor.
  • 7-day error guarantee