O raio de convergência, em séries de potências, indica o raio da circunferência em torno do centro da série dentro da qual a série converge. Ou seja, pode-se garantir a convergência no intervalo aberto (a − R, a + R), onde a é o centro da série.
De acordo com essas informações e o conteúdo estudado sobre séries de potências, analise as afirmativas a seguir.
I. Se R é o raio de convergência de ∑cn.xn, então (R) 1/2 é o raio de convergência de ∑cn.x2n.
II. O teste da razão determina a convergência nas extremidades do intervalo de convergência.
III. Se limite de (Cn) 1/n = L>0, então a série ∑cn(x − a)n tem raio de convergência 1/L.
IV. Se uma série de potências é convergente para valores de |x| < R com R > 0, então R é chamado de raio de convergência.
Agora, assinale a alternativa que apresenta a sequência correta:
I, III e IV.
II, III e IV.
II e III.
I e IV.
I, II e IV.