Questão 6
Calcule a derivada segunda de \vec{r}(t)=\left(\frac{3}{t},\sen(t+t^{2}),e^{t}\right) e assinale a alternativa que a representa.
a) \vec{r}^{\prime\prime}(t)=\left(6t^{-3},(1+2t)\cos(t+t^{2}),e^{t}\right)
b) \vec{r}^{\prime\prime}(t)=\left(6t^{-3},(2\cos(t+t^{2})-\sen(t^{2}+t))-4(t+t^{2})\sen(t^{2}+t),e^{t}\right)
c) \vec{r}^{\prime\prime}(t)=\left(-3t^{-2},(1+2t)\cos(t+t^{2}),e^{t}\right)
d) \vec{r}^{\prime\prime}(t)=\left(6t^{-2},(2\cos(t+t^{2})-\sen(t^{2}+t))-4(t+t^{2})\sen(t^{2}+t),0\right)
e) \vec{r}^{\prime\prime}(t)=\left(-3t^{-2},(2\cos(t+t^{2})-\sen(t^{2}+t))-4(t+t^{2})\sen(t^{2}+t),e^{t}\right)