·
Engenharia Mecânica ·
Mecânica
Send your question to AI and receive an answer instantly
Recommended for you
Preview text
1126. Uma partícula é projetada para a direita a partir da posição x=0 com uma velocidade inicial de 6mls. Se a aceleração da partícula é definida pela relação a = -0,6 v^3/2, onde a e v são expressas em m/s² e m/s respectivamente, determinar (a) a distância que a partícula irá percorrer se sua velocidade é 4mls, (b) o tempo quando v = 1mls.\n\na = -0,6 v^3/2 \n dv/dx = a • v # regra da cadeia\n\nv • dv = a • v • dx -> v = -0,6 dx \n\n-Quando x = 0 v = 9mls\n\nv • dv = -0,6 dx -> v^(-3/2) dv = -0,6 dx\n\n∫v^(-1/2) dv = -0,6 ∫ dx \n\nv^(1/2) |0 = -0,6 x |0\n\n2. (v^1/2 g^(1/2)) = -0,6(x-x0)\n\nx = 1/(0,3 (3 - 4^(1/2))) \n\n- Para v = 4mls \n\nx = 1/(0,3 \n\n0,3 = 3,33 m\n\nx = 3,33 m
Send your question to AI and receive an answer instantly
Recommended for you
Preview text
1126. Uma partícula é projetada para a direita a partir da posição x=0 com uma velocidade inicial de 6mls. Se a aceleração da partícula é definida pela relação a = -0,6 v^3/2, onde a e v são expressas em m/s² e m/s respectivamente, determinar (a) a distância que a partícula irá percorrer se sua velocidade é 4mls, (b) o tempo quando v = 1mls.\n\na = -0,6 v^3/2 \n dv/dx = a • v # regra da cadeia\n\nv • dv = a • v • dx -> v = -0,6 dx \n\n-Quando x = 0 v = 9mls\n\nv • dv = -0,6 dx -> v^(-3/2) dv = -0,6 dx\n\n∫v^(-1/2) dv = -0,6 ∫ dx \n\nv^(1/2) |0 = -0,6 x |0\n\n2. (v^1/2 g^(1/2)) = -0,6(x-x0)\n\nx = 1/(0,3 (3 - 4^(1/2))) \n\n- Para v = 4mls \n\nx = 1/(0,3 \n\n0,3 = 3,33 m\n\nx = 3,33 m