• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Medicina Veterinária ·

Bioestatística

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Bioestatistica-Medidas de Posicao em Equinos Mangalarga

1

Bioestatistica-Medidas de Posicao em Equinos Mangalarga

Bioestatística

CESCAGE

Analise Estatistica Altura Equinos Mangalarga Machos e Femeas

3

Analise Estatistica Altura Equinos Mangalarga Machos e Femeas

Bioestatística

CESCAGE

Exercícios Resolvidos de Bioestatística Veterinária: Variáveis, Probabilidades e Distribuições

5

Exercícios Resolvidos de Bioestatística Veterinária: Variáveis, Probabilidades e Distribuições

Bioestatística

CESCAGE

Texto de pré-visualização

Dada uma variável aleatória VA 1605 1708 1737 1774 1801 1649 1709 1737 1776 1806 1669 1711 1748 1777 1810 1677 1712 1750 1783 1819 1686 1714 1757 1783 1820 1687 1729 1761 1791 1832 1693 1731 1765 1792 1837 1693 1734 1767 1795 1841 1699 1734 1771 1800 1877 1704 1735 1773 1800 1887 Determinar Média e Mediana Variância e Desvio Padrão Coeficiente de Variação O número de classes k O Intervalo de Classe IC Avaliar a frequência por classe A partir da Curva de Distribuição Normal Qual a frequência de dados que ocorrem além do limite da média mais um desvio padrão µσ Histograma Frequência cumulativo 1605 1645 1686 1726 1766 1806 1847 1887 Mais Bloco Histograma Frequência cumulativo 1806 1766 1726 1847 1686 1605 1887 Mais 1645 Bloco A média é calculada a pela fórmula 𝑥 𝑖1 𝑛 𝑥𝑖 𝑛 160516491669 1887 50 1 7590 A mediana é dada pela média dos dois valores centrais 𝑚𝑒𝑑𝑖𝑎𝑛𝑎 17571761 2 1 7590 A variância é dada por σ 2 𝑖1 𝑛 𝑥𝑖𝑥 2 𝑛 σ 2 16051759 2188717590 2 50 0 003337258776 O desvio padrão é a raiz quadrada da variância σ 0 05776901224 O coeficiente de variação é dado por 𝐶𝑉 σ 𝑥 00577 17590 𝑥100 3 28419 A partir do histograma abaixo observamos os intervalos de classe e frequências dispostos na tabela a seguir Classe Frequência 160 164 1 164 169 3 169 173 11 173 177 14 177 181 14 181 186 5 186 190 2 A média é calculada a pela fórmula x i1 n xi1605164916691887 50 17590 A mediana é dada pela média dos dois valores centrais mediana17571761 2 17590 A variância é dada por σ 2 i1 n xix 2 σ 216051759 2188717590 2 50 0003337258776 O desvio padrão é a raiz quadrada da variância σ005776901224 O coeficiente de variação é dado por CV σ x 00577 17590 x100328419 A partir do histograma abaixo observamos os intervalos de classe e frequências dispostos na tabela a seguir Classe Frequência 160 164 1 164 169 3 169 173 11 173 177 14 177 181 14 181 186 5 186 190 2

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Bioestatistica-Medidas de Posicao em Equinos Mangalarga

1

Bioestatistica-Medidas de Posicao em Equinos Mangalarga

Bioestatística

CESCAGE

Analise Estatistica Altura Equinos Mangalarga Machos e Femeas

3

Analise Estatistica Altura Equinos Mangalarga Machos e Femeas

Bioestatística

CESCAGE

Exercícios Resolvidos de Bioestatística Veterinária: Variáveis, Probabilidades e Distribuições

5

Exercícios Resolvidos de Bioestatística Veterinária: Variáveis, Probabilidades e Distribuições

Bioestatística

CESCAGE

Texto de pré-visualização

Dada uma variável aleatória VA 1605 1708 1737 1774 1801 1649 1709 1737 1776 1806 1669 1711 1748 1777 1810 1677 1712 1750 1783 1819 1686 1714 1757 1783 1820 1687 1729 1761 1791 1832 1693 1731 1765 1792 1837 1693 1734 1767 1795 1841 1699 1734 1771 1800 1877 1704 1735 1773 1800 1887 Determinar Média e Mediana Variância e Desvio Padrão Coeficiente de Variação O número de classes k O Intervalo de Classe IC Avaliar a frequência por classe A partir da Curva de Distribuição Normal Qual a frequência de dados que ocorrem além do limite da média mais um desvio padrão µσ Histograma Frequência cumulativo 1605 1645 1686 1726 1766 1806 1847 1887 Mais Bloco Histograma Frequência cumulativo 1806 1766 1726 1847 1686 1605 1887 Mais 1645 Bloco A média é calculada a pela fórmula 𝑥 𝑖1 𝑛 𝑥𝑖 𝑛 160516491669 1887 50 1 7590 A mediana é dada pela média dos dois valores centrais 𝑚𝑒𝑑𝑖𝑎𝑛𝑎 17571761 2 1 7590 A variância é dada por σ 2 𝑖1 𝑛 𝑥𝑖𝑥 2 𝑛 σ 2 16051759 2188717590 2 50 0 003337258776 O desvio padrão é a raiz quadrada da variância σ 0 05776901224 O coeficiente de variação é dado por 𝐶𝑉 σ 𝑥 00577 17590 𝑥100 3 28419 A partir do histograma abaixo observamos os intervalos de classe e frequências dispostos na tabela a seguir Classe Frequência 160 164 1 164 169 3 169 173 11 173 177 14 177 181 14 181 186 5 186 190 2 A média é calculada a pela fórmula x i1 n xi1605164916691887 50 17590 A mediana é dada pela média dos dois valores centrais mediana17571761 2 17590 A variância é dada por σ 2 i1 n xix 2 σ 216051759 2188717590 2 50 0003337258776 O desvio padrão é a raiz quadrada da variância σ005776901224 O coeficiente de variação é dado por CV σ x 00577 17590 x100328419 A partir do histograma abaixo observamos os intervalos de classe e frequências dispostos na tabela a seguir Classe Frequência 160 164 1 164 169 3 169 173 11 173 177 14 177 181 14 181 186 5 186 190 2

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®