·
Engenharia Ambiental e Sanitária ·
Eletromagnetismo
Send your question to AI and receive an answer instantly
Recommended for you
Preview text
19 a\n\n \n\n\nopress\u00e3o: 2mm \nmica \nVinco: 1cm \n\nK: 2,4 \n\nC: K \u00b7 \u00cda \nd \n \n(C=5,4 \u00b7 10^(-10) \nm^(-1)\nC: 7 \nC: 2\nE: 9 \u00b7 10^6\npro: t\u00e1tulo\nE: K \nd \nE=K \nd \nR =micras=54\u00b710^(-10) \nC=20m \n\n\n\n\n\n\n\n\ns\n\n\ns\n\n\ns\n\n\n\n\n\n\n\n\nb a) C = E o A \n d\n \n \n \n \n b) V = C \u00b7 U \n \n V1=1/d \n C \n C2/C3 \n V= 1/ \nC \n V=1/2 \n\nV= \n\nv\nu\nx\n\nj\nx\n\n\n\n\n\n\n\n C=K1 \u00b7 EC A/2 \nd\n \n\n\n\n(EF \u00b3=K1 \nSl/2\n\nC=E \nQ1 \u00b5 \nK2 O \n+E O E \nd/2 \nd/2 \nd/2 \n\n \n( d \n( E \nE \n{\n \ndoth\n)\n) D) a placa \u00e9s \n\n\n \npg)\nC1=K1 \u00b7 E o A/2 \n\n \n\nC2=K2 \u00b7 E o A/2 \nd\n\n C= ( C1 + C2) \nC= ( K1AB1 + K2AB2) \n d\n d\n\n\nC = E o A \n d\n( K1 + K2\n 85:\n \n condutor \n \n\n \n\n\n\n \n \nvoul\n \n\n\n\n\\\n\n(0\n \n1 A \n d\nd\nd1/d2 \n d3 \nk = R \n\n(\\R \n A1 v\u0153AC2/ dA1 +\n+ R \n ( R2 + R3 \nGa+C\n\n\nG R \n p adt + ;\n \n1 = 1 \n\n1/r + E\n( V1 = 0.1 V R = 500 Ω\nV2 = 0.16 V R = 1000 Ω\n\na)\n V.E.R.R. = D.E.(-V2) \nV0 = E.V4 + (V1 / R1)\nV1.V2.R2R1 + V2.R2 - V1.R1 - V2.R2 = 0\nV1.R1 - V1.R2 - V2.r1 - V2.R2 = D.\n\nme 4×1×10^−6 = 0.06 D => R = 1500 Ω\n\nb)\nE = V1 + (V2 / R) = E.Q.b + (0.1 / 18 × 10^−3) = 6.0 = 0.4V\n\nc)\nm = √(R / P) = m = √(0.16 / 1000) ⇒ m = 2.56 X 10^−3\n\nA \n2 × 15^−5\nm = 0.26 (%)\n\nb)\nP = R2 = 994. (10^−3).(8 - 9.94 × 10^−6 W)\n\nb) P = R2\n(A) → I\n\n= I^2 / R\n\n.....................................\n\n T 1 = I_1 + I_2\nE_1 = \u03B2_{I_2} - \u03B5_{1} = D\u03B5_{1} + I_2 + I_3 + I_4\nE_2 = - I_3 - I_4 = D I_3 + D I_4\n4 I_1 + 5 I_2 = 2 / 9 + 4* I_1 + 5* I_2 = 3 \n4 I_1 + 5 I_2 + I_1 + 5 I_2 = 1 \n2 I_1 + 5 I_2 = 1\n9 I_1 + 5 I_2 = 3 = 0 9 I_1 + (3 - 5 I_2) / 19\nI_1 + 7 I_1 = 1 - 5 I_1 = 0 15 - 0.25 I_2 + 0.25 I_3 = 0 30 - 6\n15 - 0.584 = D \nI_1 = 0.4 \u03B1 I\nI_2 = 0.263\nP_1 = I_1^2 \cdot R_1 = P_1 = 0.046 W\nP_2 = I_2^2 \cdot R_2 = P_2 = 0.0499 uK\nP_3 = I_3^2 \cdot R_3 = P_3 = 9 + 0.804 P 100 V on t = 0 9.9*10^2 c V\na) V_{c} = 9 e^{- - \frac{15}{6} t} + V_0 e^{- - \frac{t}{c}} \nV(t) = e^{- \frac{1}{6} \ln(\frac{V}{V_0})} + t^6 - t_0 + t^1 = 10\na =2.17\nb) V(t) = V_0 e^{ \frac{3^6}{t^2}} \cdots V \cdots 100 e^{ - 2.17} - V = 39.6*10^{-3} V\nc) R_{C} = 10 M + 0.55 R = 1 M R\na(t = 0) e^{c}\na{0 = 9.9 e^{-1^{(6)}\hat{9}} }\na/ 90* \sqrt{10} (0.9 \sqrt{C} U - 0.9) (2\times 10^6 A)\ne^{- \frac{0}{10^2}} \na 10^2/r\n\tan(\frac{90fd^2}{dt}) + 0 \\\nV_0.e^{- \frac{t}{t}} \nV_{(t)} = 1 \cdots e^{ c^{-\frac{6}{d}} } Q) C_4 C_2 C_3 \n1 = 1 + 1 / 20uF\nceq = C_Q 5uF = Q = X - 4 C + D + D = 0.4 C\n8 = 1/5 + C' (64)\nelec eq (C_1 + C(2) ... D )\nse = 12 uF\nX 5 \nqi = 3.48 + 9 = 2.44C\n30 = 1 / X - 1/10 =\nU_{_2}(C) = 4.8 = 9 / 2 S . \nV = 4 + 10 = 9 + 1.0 & V = 14 + 4. +\nQ = 4.8\times 10^{-3}\nV_{A} = 5\nPart B]\nO^2 = \cdots\nR = (R + \cdots (B + R_D)) + (R^2) / 1 \n= 1 (1R_1 + 1R_2) = 1.0(4 + 5) \nV_{dc} = 5 - 0 - 0.752 (tht - \cdots) = 6.3 - 0.1V a) V: R.i=0.82=14. i=D i=2A\nb) P: S2 Req\nreq: \nP: 2 S 14R\nP: 56 V\nc) req: 7Ω\nV=a.b\nVsg S2: V=10V - V1=10 - 0, - V0=10R11 - 5: 5.14 • \nVu: 4.2 = V= 8V\nVbb: R.i\nVbb: 7 \nVbb: 2V\nD) e ponta A
Send your question to AI and receive an answer instantly
Recommended for you
Preview text
19 a\n\n \n\n\nopress\u00e3o: 2mm \nmica \nVinco: 1cm \n\nK: 2,4 \n\nC: K \u00b7 \u00cda \nd \n \n(C=5,4 \u00b7 10^(-10) \nm^(-1)\nC: 7 \nC: 2\nE: 9 \u00b7 10^6\npro: t\u00e1tulo\nE: K \nd \nE=K \nd \nR =micras=54\u00b710^(-10) \nC=20m \n\n\n\n\n\n\n\n\ns\n\n\ns\n\n\ns\n\n\n\n\n\n\n\n\nb a) C = E o A \n d\n \n \n \n \n b) V = C \u00b7 U \n \n V1=1/d \n C \n C2/C3 \n V= 1/ \nC \n V=1/2 \n\nV= \n\nv\nu\nx\n\nj\nx\n\n\n\n\n\n\n\n C=K1 \u00b7 EC A/2 \nd\n \n\n\n\n(EF \u00b3=K1 \nSl/2\n\nC=E \nQ1 \u00b5 \nK2 O \n+E O E \nd/2 \nd/2 \nd/2 \n\n \n( d \n( E \nE \n{\n \ndoth\n)\n) D) a placa \u00e9s \n\n\n \npg)\nC1=K1 \u00b7 E o A/2 \n\n \n\nC2=K2 \u00b7 E o A/2 \nd\n\n C= ( C1 + C2) \nC= ( K1AB1 + K2AB2) \n d\n d\n\n\nC = E o A \n d\n( K1 + K2\n 85:\n \n condutor \n \n\n \n\n\n\n \n \nvoul\n \n\n\n\n\\\n\n(0\n \n1 A \n d\nd\nd1/d2 \n d3 \nk = R \n\n(\\R \n A1 v\u0153AC2/ dA1 +\n+ R \n ( R2 + R3 \nGa+C\n\n\nG R \n p adt + ;\n \n1 = 1 \n\n1/r + E\n( V1 = 0.1 V R = 500 Ω\nV2 = 0.16 V R = 1000 Ω\n\na)\n V.E.R.R. = D.E.(-V2) \nV0 = E.V4 + (V1 / R1)\nV1.V2.R2R1 + V2.R2 - V1.R1 - V2.R2 = 0\nV1.R1 - V1.R2 - V2.r1 - V2.R2 = D.\n\nme 4×1×10^−6 = 0.06 D => R = 1500 Ω\n\nb)\nE = V1 + (V2 / R) = E.Q.b + (0.1 / 18 × 10^−3) = 6.0 = 0.4V\n\nc)\nm = √(R / P) = m = √(0.16 / 1000) ⇒ m = 2.56 X 10^−3\n\nA \n2 × 15^−5\nm = 0.26 (%)\n\nb)\nP = R2 = 994. (10^−3).(8 - 9.94 × 10^−6 W)\n\nb) P = R2\n(A) → I\n\n= I^2 / R\n\n.....................................\n\n T 1 = I_1 + I_2\nE_1 = \u03B2_{I_2} - \u03B5_{1} = D\u03B5_{1} + I_2 + I_3 + I_4\nE_2 = - I_3 - I_4 = D I_3 + D I_4\n4 I_1 + 5 I_2 = 2 / 9 + 4* I_1 + 5* I_2 = 3 \n4 I_1 + 5 I_2 + I_1 + 5 I_2 = 1 \n2 I_1 + 5 I_2 = 1\n9 I_1 + 5 I_2 = 3 = 0 9 I_1 + (3 - 5 I_2) / 19\nI_1 + 7 I_1 = 1 - 5 I_1 = 0 15 - 0.25 I_2 + 0.25 I_3 = 0 30 - 6\n15 - 0.584 = D \nI_1 = 0.4 \u03B1 I\nI_2 = 0.263\nP_1 = I_1^2 \cdot R_1 = P_1 = 0.046 W\nP_2 = I_2^2 \cdot R_2 = P_2 = 0.0499 uK\nP_3 = I_3^2 \cdot R_3 = P_3 = 9 + 0.804 P 100 V on t = 0 9.9*10^2 c V\na) V_{c} = 9 e^{- - \frac{15}{6} t} + V_0 e^{- - \frac{t}{c}} \nV(t) = e^{- \frac{1}{6} \ln(\frac{V}{V_0})} + t^6 - t_0 + t^1 = 10\na =2.17\nb) V(t) = V_0 e^{ \frac{3^6}{t^2}} \cdots V \cdots 100 e^{ - 2.17} - V = 39.6*10^{-3} V\nc) R_{C} = 10 M + 0.55 R = 1 M R\na(t = 0) e^{c}\na{0 = 9.9 e^{-1^{(6)}\hat{9}} }\na/ 90* \sqrt{10} (0.9 \sqrt{C} U - 0.9) (2\times 10^6 A)\ne^{- \frac{0}{10^2}} \na 10^2/r\n\tan(\frac{90fd^2}{dt}) + 0 \\\nV_0.e^{- \frac{t}{t}} \nV_{(t)} = 1 \cdots e^{ c^{-\frac{6}{d}} } Q) C_4 C_2 C_3 \n1 = 1 + 1 / 20uF\nceq = C_Q 5uF = Q = X - 4 C + D + D = 0.4 C\n8 = 1/5 + C' (64)\nelec eq (C_1 + C(2) ... D )\nse = 12 uF\nX 5 \nqi = 3.48 + 9 = 2.44C\n30 = 1 / X - 1/10 =\nU_{_2}(C) = 4.8 = 9 / 2 S . \nV = 4 + 10 = 9 + 1.0 & V = 14 + 4. +\nQ = 4.8\times 10^{-3}\nV_{A} = 5\nPart B]\nO^2 = \cdots\nR = (R + \cdots (B + R_D)) + (R^2) / 1 \n= 1 (1R_1 + 1R_2) = 1.0(4 + 5) \nV_{dc} = 5 - 0 - 0.752 (tht - \cdots) = 6.3 - 0.1V a) V: R.i=0.82=14. i=D i=2A\nb) P: S2 Req\nreq: \nP: 2 S 14R\nP: 56 V\nc) req: 7Ω\nV=a.b\nVsg S2: V=10V - V1=10 - 0, - V0=10R11 - 5: 5.14 • \nVu: 4.2 = V= 8V\nVbb: R.i\nVbb: 7 \nVbb: 2V\nD) e ponta A