·
Engenharia Mecânica ·
Transferência de Calor
Send your question to AI and receive an answer instantly
Recommended for you
2
Solução da Série para Condução Transitória em Parede Plana - Problema 5.43
Transferência de Calor
UFRJ
1
Tratamento Térmico de Rolamentos de Aço Inoxidável - Cálculo de Tempo e Carga Térmica
Transferência de Calor
UFRJ
2
Resfriamento de Esfera em Banho Térmico - Análise Detalhada e Gráficos
Transferência de Calor
UFRJ
1
Reator de Agitação Aquecimento com Vapor Calculo de Comprimento e Vazão - Problema Resolvido
Transferência de Calor
UFRJ
1
Exercícios Resolvidos - Transferência de Calor em Aletas e Tubos
Transferência de Calor
UFRJ
1
Trocas de Radiação entre Superfícies
Transferência de Calor
UFRJ
1
Trabalho de Trans Cal 1 Projetar um Forno de Dimensões Cúbicas
Transferência de Calor
UFRJ
1
Dimensionamento de Forno Cap 13 Incropwra
Transferência de Calor
UFRJ
1
Transferência de Calor Radiativo - Aquecimento de Pelota de Carvão em Forno a 1000C
Transferência de Calor
UFRJ
2
Aquecimento e Fusão de Nanopartículas Cerâmicas - Análise de Tempo de Voo e Distância
Transferência de Calor
UFRJ
Preview text
PROBLEM 538 KNOWN Diameter of highly polished aluminum rod Temperature of rod initially and at two later times Room air temperature FIND Values of constants C and n in Equation 526 Plot rod temperature vs time for varying and constant heat transfer coefficients SCHEMATIC ASSUMPTIONS 1 Constant properties 2 Radiation negligible because rod is highly polished 3 Lumped capacitance approximation is valid PROPERTIES Table A1 Aluminum T 328 K c 916 JkgK 2702 kgm3 k 238 WmK ANALYSIS If the heat transfer coefficient is given by Equation 526 then the temperature as a function of time is given by Equation 528 1 1 n n s c i i nCA t Vc 1 where T T and Asc is the area exposed to convection Asc πDL Since the rod temperature is known at two different times Equation 1 can be evaluated at these two times making it possible to solve for the two unknowns C and n The two equations are 1 1 1 1 n n s c i i nCA t Vc 1 2 2 1 n n s c i i nCA t Vc 2ab These equations cannot be explicitly solved for C and n They can be numerically solved in this form using IHT or some other software or they can be further manipulated to solve for the times 1 1 1 4 n n i i cD t nC 2 2 1 4 n n i i cD t nC 3ab where we have used VAsc D4 Taking the ratio of Equations 3a and 3b yields 2 2 1 1 1 1 n i n i t t 30 C 20 C 1 6700 s 90 C 20 C 1250 s 65 C 20 C 1 90 C 20 C n n 0143 1 536 0643 1 n n 4abc Continued Ti 90C T 20C D 35 mm t1 1250s T1 65C t2 6700s T2 30C Ti 90C T 20C D 35 mm t1 1250s T1 65C t2 6700s T2 30C PROBLEM 538 Cont This can be iteratively or numerical solved for n to find n 025 Then C can be determined from Equation 3a or 3b 025 3 2 125 1 025 1 45 C 2702 kgm 916 Jkg K 0035 m 1 1 28 Wm K 4 70 C 4 025 70 C 1250 s n n i i cD C n t 2 125 28 Wm K C n 025 Now that these constants are known the validity of the lumped capacitance approximation can checked The maximum heat transfer coefficient occurs at the initial time 025 2 125 2 28 Wm K 90 20K 81 Wm K n h C T T Thus using the conservative definition Bi hD2k 6 104 The lumped capacitance approximation is valid The heat transfer coefficient corresponding to a rod temperature of 2 i T T T 55C is 025 2 125 2 28 Wm K 55 20K 68 Wm K n h C T T The plot below shows the rod temperature as a function of time using Equation 1 above for variable heat transfer coefficient as well as the rod temperature assuming the constant value of h 68 Wm2K using text Equation 56 0 01 02 03 04 05 06 07 08 09 1 0 2000 4000 6000 8000 10000 i t s constant h variable h COMMENTS 1 Since the heat transfer coefficient is temperature differencedependent variable h the initial cooling rates are larger when this dependence is accounted for As the temperature difference decreases the variable h case cools slower relative to the constant h case 2 The discrepancy between the variable and constant heat transfer coefficient cases is not large under these conditions The difference would be greater if n were larger
Send your question to AI and receive an answer instantly
Recommended for you
2
Solução da Série para Condução Transitória em Parede Plana - Problema 5.43
Transferência de Calor
UFRJ
1
Tratamento Térmico de Rolamentos de Aço Inoxidável - Cálculo de Tempo e Carga Térmica
Transferência de Calor
UFRJ
2
Resfriamento de Esfera em Banho Térmico - Análise Detalhada e Gráficos
Transferência de Calor
UFRJ
1
Reator de Agitação Aquecimento com Vapor Calculo de Comprimento e Vazão - Problema Resolvido
Transferência de Calor
UFRJ
1
Exercícios Resolvidos - Transferência de Calor em Aletas e Tubos
Transferência de Calor
UFRJ
1
Trocas de Radiação entre Superfícies
Transferência de Calor
UFRJ
1
Trabalho de Trans Cal 1 Projetar um Forno de Dimensões Cúbicas
Transferência de Calor
UFRJ
1
Dimensionamento de Forno Cap 13 Incropwra
Transferência de Calor
UFRJ
1
Transferência de Calor Radiativo - Aquecimento de Pelota de Carvão em Forno a 1000C
Transferência de Calor
UFRJ
2
Aquecimento e Fusão de Nanopartículas Cerâmicas - Análise de Tempo de Voo e Distância
Transferência de Calor
UFRJ
Preview text
PROBLEM 538 KNOWN Diameter of highly polished aluminum rod Temperature of rod initially and at two later times Room air temperature FIND Values of constants C and n in Equation 526 Plot rod temperature vs time for varying and constant heat transfer coefficients SCHEMATIC ASSUMPTIONS 1 Constant properties 2 Radiation negligible because rod is highly polished 3 Lumped capacitance approximation is valid PROPERTIES Table A1 Aluminum T 328 K c 916 JkgK 2702 kgm3 k 238 WmK ANALYSIS If the heat transfer coefficient is given by Equation 526 then the temperature as a function of time is given by Equation 528 1 1 n n s c i i nCA t Vc 1 where T T and Asc is the area exposed to convection Asc πDL Since the rod temperature is known at two different times Equation 1 can be evaluated at these two times making it possible to solve for the two unknowns C and n The two equations are 1 1 1 1 n n s c i i nCA t Vc 1 2 2 1 n n s c i i nCA t Vc 2ab These equations cannot be explicitly solved for C and n They can be numerically solved in this form using IHT or some other software or they can be further manipulated to solve for the times 1 1 1 4 n n i i cD t nC 2 2 1 4 n n i i cD t nC 3ab where we have used VAsc D4 Taking the ratio of Equations 3a and 3b yields 2 2 1 1 1 1 n i n i t t 30 C 20 C 1 6700 s 90 C 20 C 1250 s 65 C 20 C 1 90 C 20 C n n 0143 1 536 0643 1 n n 4abc Continued Ti 90C T 20C D 35 mm t1 1250s T1 65C t2 6700s T2 30C Ti 90C T 20C D 35 mm t1 1250s T1 65C t2 6700s T2 30C PROBLEM 538 Cont This can be iteratively or numerical solved for n to find n 025 Then C can be determined from Equation 3a or 3b 025 3 2 125 1 025 1 45 C 2702 kgm 916 Jkg K 0035 m 1 1 28 Wm K 4 70 C 4 025 70 C 1250 s n n i i cD C n t 2 125 28 Wm K C n 025 Now that these constants are known the validity of the lumped capacitance approximation can checked The maximum heat transfer coefficient occurs at the initial time 025 2 125 2 28 Wm K 90 20K 81 Wm K n h C T T Thus using the conservative definition Bi hD2k 6 104 The lumped capacitance approximation is valid The heat transfer coefficient corresponding to a rod temperature of 2 i T T T 55C is 025 2 125 2 28 Wm K 55 20K 68 Wm K n h C T T The plot below shows the rod temperature as a function of time using Equation 1 above for variable heat transfer coefficient as well as the rod temperature assuming the constant value of h 68 Wm2K using text Equation 56 0 01 02 03 04 05 06 07 08 09 1 0 2000 4000 6000 8000 10000 i t s constant h variable h COMMENTS 1 Since the heat transfer coefficient is temperature differencedependent variable h the initial cooling rates are larger when this dependence is accounted for As the temperature difference decreases the variable h case cools slower relative to the constant h case 2 The discrepancy between the variable and constant heat transfer coefficient cases is not large under these conditions The difference would be greater if n were larger