• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia Aeronáutica ·

Matemática 1

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Ime 2019 - Correção Matemática

11

Ime 2019 - Correção Matemática

Matemática

ITA

Texto de pré-visualização

Teorema de Menelao:\nDemostrar a culminar las razones:\nΔ DAG ~ Δ XYC\nDA / AB = DA / AY = YB / YB\nAY / XG = AY / TZ = YB / 3C\nXG = A2 / 3C\n\n\nMismo caso pero \"diferente\".\n\nConservando [Análogo]:\nXc / Xy = YD / YB = Yl / Yc = l\n\n\nClasificación de Propiedades:\nP(x) m/n\nP(y) k/m a b/c = 0\nP(z) c/n\n\n(Ps) {X1,X2,Y1,Y2} \n\n\n Teorema de Ceva:\\n\\nEjemplos:\\n\\nProp\\u00f3sito\\n\\nEjemplo I) \\u0394 ABC Acut\\u00e2ngulo.\\n\\n\\u00a0\\u003d\\u00a0\\u200b\\u200b\\u200b\\u200b\\n\\nRecepci\\u00f3n:\\n\\nT\\u00e9orico\\nDemostraci\\u00f3n:\\n\\n\\u00b0x\\u00b7s\\u200b\\u200b\\n\\na (\\u00x78)\\u003d\\u00b8\\u003d\\u00b7\\u00a9\\u00b10\\u25e0\\u25a1\\u25b7\\u2071 Proposi\\u00e7\\u00f3es\\n\\u00cdndices\\n\\u0000<!DOCTYPE HTML>\\n\\u03b1=lat=\\u003d\\u0435\\u00a6\\u200b\\u200b\\u200b\\u200b\\u200b\\u200b\\u200b\\n\\u0019+x (\\u00a7)\\n+ +\\n\\u03c8 (1)\\n\\u0000\\u1615&\\u03b8\\u2200\\u00a3\\u005d\\u00a8(3)\\n\\u210d\\u200b R\\u00e9mouva\\u00e7\\u00e3o provenient d\\u00eda\\u00e9rios\\n24)\\n\\nTangencia de circunferencias\\n\\nL\\u00ednea (1) Ejemplos\\n\\n\\u00b6\\n(6x) \\u003d (7-x)\\u00b2 (c)\\u003e 76; 10\\u10c\\u003c61\\u10c\\u003c\\u00b5\\n194-244/\\u59f\\u10e3\\u003f 23) Contelhada.\n30) \n20°\n \n\nb \nh\nc\n x\n \n e \n\nx\n Y\n = A . B . c .\ny =\n\n= & y = h\n \nA .y = \n e & b\nS | p | x | \n= (A,a ): | t \n\nxfy =\n\n = P0 + \n\n \n \nd e .\n 4e.\nh \n \n\n28 = 60°\n \n\nhn Ac \nA\n\\bg&\n= (5) = \n ( q ): \nR = (\n=B\n------ K .\n\nd@2 = | (A ) \n \\s\\ \n e ° = \n\n= ; ..; .(C);\n \n\nC;\n \n , \n \n\nb\n \n \n \n \n\ns (AH)\nA 1\ndC\n \n = 2 °) \n143 \n= (-----\n\n \n \n d12|0-4| ;)\n\nd § ;\n \n 2 ;\n \n \nCD( 1 )\n( t(k) 0;\n\n (R ) \nD\n( b )\n r \n= pot; \n(-sin^ + tan o\n= \n= , \n \n 4 ° \nO ; \n \n1 .=> ; K 0( C) \n \n\n \n \n (6CC; (d) = .) \n \n\n ( semid.(1)\n(1c)\n(0) - (2)\n(A,R ) - ( d ) 0 ( ( Lista P1.14)\nA\n\n) \nQuadriláteros Notáveis \n\n02) \nPolígonos Convexos\n\nA\n\na\nn\nM > E\n\n\t \n\t \n(M1 N/0)\nM\n\nA\nD D\n\niA C\nB\n\n\n\n\n\t \n S\n\n (2) \n(ABC) = R\nD\n \n\nG\n\n\nlanonto=0\n\n M/I = 0\n \nB \n\t \nM I G(A;BC)\n\t = B • \nA =\nM1 \n\t \n\t \n 'I \n \n\t\n\t \n\t \n\nB\n\t \n ns Do \nP\n(D}P\n-1\nL2 === \n( d(A,8) ; C,0 - (0) \n\n(R + A).\n D\n \n\t (B) \n S\nBCZ\t \n \n( e) = A\n D) b\nC B D A\nL2+\n T\n (\n\t ( I )\n \nM\n= C\n\t\n (C)\nFin_A ;\n Polígonos Convexos:\n \nif m import \n( A1 -31 ). R centro. \n \nE | n | ; \nT; a centro.\n;\n \n( Se n par )\n \n\nT mH)\nD M = Ce = (m, ° .... e )\n \nA ( {\n\nT M : E \n\nS n A. N. C .\n\ne \n\n - C0 d +\n1 3 0 - l b . A\n \n\ng (2)\£,+ \n\r{ U}\n = Q .(0e ) ;\n\nd\n1- ( i)\n050( ctr A)0 occ\n\nd |\n\n C\n\n( ( a )\n \n(CAB)\n= 60\nd a I d ; \nπ, in 0\ng = (d A)\n;-\n a, b 4 - s \nM\n \n\n0 L . d I | = | ; \n(ABC)D,A. p\n( m ;N= 6. ad.\n A\n\n\nt ( ) k 1 =\n t (x) = \n = kS\n \n= t \n \n= \n( B ) d \n;\n 04\n\n62)\nB\nα+β+θ=90°\nα=θ=90°\nTgα=mb/mb\nc\n0\n\nΔG=GE=CK=MV\nBC=CE=DK\n\n*mbl= α: (m-1), b= d e m\nm= C+E=m\nC, 0=8.=\n\nc8= 4/1,\nCyo= lern’(ES 1/2 = C ═ REQUISITO.\n\n\n64)\n A\nB\nL2\n15\nl2\n\n ΔA ~ Δl\n\n1,2; 9.15 Pitágoras - Socialtherapia\n(Terminou)\n\n\n# Triângulos Quissquer\n\n1) Teorema dos Cosenos\n\nA\nB\nc\n\nA\n\n18)\n c\na\n\n b\n\ny\n\nZ\n\nx\n\n\n0\n\nx\n\ny\n\nG\n\n\n\nAGOE / B.\n\n0\n\nc\n\nl8)\nd\n\n\n\n(7)\n c\n\nl...(Z)= l\nEq\n\nECPE\n\n]*‐\n\nC. A(BDE), C.l....\n\nC8=b^* + (1- x)^2\n\ncos2k= a\n\nC=cos(7+b)\nc= (ws b.o)= b\n... b\n\nobservações: retorno do Triângulo.

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Ime 2019 - Correção Matemática

11

Ime 2019 - Correção Matemática

Matemática

ITA

Texto de pré-visualização

Teorema de Menelao:\nDemostrar a culminar las razones:\nΔ DAG ~ Δ XYC\nDA / AB = DA / AY = YB / YB\nAY / XG = AY / TZ = YB / 3C\nXG = A2 / 3C\n\n\nMismo caso pero \"diferente\".\n\nConservando [Análogo]:\nXc / Xy = YD / YB = Yl / Yc = l\n\n\nClasificación de Propiedades:\nP(x) m/n\nP(y) k/m a b/c = 0\nP(z) c/n\n\n(Ps) {X1,X2,Y1,Y2} \n\n\n Teorema de Ceva:\\n\\nEjemplos:\\n\\nProp\\u00f3sito\\n\\nEjemplo I) \\u0394 ABC Acut\\u00e2ngulo.\\n\\n\\u00a0\\u003d\\u00a0\\u200b\\u200b\\u200b\\u200b\\n\\nRecepci\\u00f3n:\\n\\nT\\u00e9orico\\nDemostraci\\u00f3n:\\n\\n\\u00b0x\\u00b7s\\u200b\\u200b\\n\\na (\\u00x78)\\u003d\\u00b8\\u003d\\u00b7\\u00a9\\u00b10\\u25e0\\u25a1\\u25b7\\u2071 Proposi\\u00e7\\u00f3es\\n\\u00cdndices\\n\\u0000<!DOCTYPE HTML>\\n\\u03b1=lat=\\u003d\\u0435\\u00a6\\u200b\\u200b\\u200b\\u200b\\u200b\\u200b\\u200b\\n\\u0019+x (\\u00a7)\\n+ +\\n\\u03c8 (1)\\n\\u0000\\u1615&\\u03b8\\u2200\\u00a3\\u005d\\u00a8(3)\\n\\u210d\\u200b R\\u00e9mouva\\u00e7\\u00e3o provenient d\\u00eda\\u00e9rios\\n24)\\n\\nTangencia de circunferencias\\n\\nL\\u00ednea (1) Ejemplos\\n\\n\\u00b6\\n(6x) \\u003d (7-x)\\u00b2 (c)\\u003e 76; 10\\u10c\\u003c61\\u10c\\u003c\\u00b5\\n194-244/\\u59f\\u10e3\\u003f 23) Contelhada.\n30) \n20°\n \n\nb \nh\nc\n x\n \n e \n\nx\n Y\n = A . B . c .\ny =\n\n= & y = h\n \nA .y = \n e & b\nS | p | x | \n= (A,a ): | t \n\nxfy =\n\n = P0 + \n\n \n \nd e .\n 4e.\nh \n \n\n28 = 60°\n \n\nhn Ac \nA\n\\bg&\n= (5) = \n ( q ): \nR = (\n=B\n------ K .\n\nd@2 = | (A ) \n \\s\\ \n e ° = \n\n= ; ..; .(C);\n \n\nC;\n \n , \n \n\nb\n \n \n \n \n\ns (AH)\nA 1\ndC\n \n = 2 °) \n143 \n= (-----\n\n \n \n d12|0-4| ;)\n\nd § ;\n \n 2 ;\n \n \nCD( 1 )\n( t(k) 0;\n\n (R ) \nD\n( b )\n r \n= pot; \n(-sin^ + tan o\n= \n= , \n \n 4 ° \nO ; \n \n1 .=> ; K 0( C) \n \n\n \n \n (6CC; (d) = .) \n \n\n ( semid.(1)\n(1c)\n(0) - (2)\n(A,R ) - ( d ) 0 ( ( Lista P1.14)\nA\n\n) \nQuadriláteros Notáveis \n\n02) \nPolígonos Convexos\n\nA\n\na\nn\nM > E\n\n\t \n\t \n(M1 N/0)\nM\n\nA\nD D\n\niA C\nB\n\n\n\n\n\t \n S\n\n (2) \n(ABC) = R\nD\n \n\nG\n\n\nlanonto=0\n\n M/I = 0\n \nB \n\t \nM I G(A;BC)\n\t = B • \nA =\nM1 \n\t \n\t \n 'I \n \n\t\n\t \n\t \n\nB\n\t \n ns Do \nP\n(D}P\n-1\nL2 === \n( d(A,8) ; C,0 - (0) \n\n(R + A).\n D\n \n\t (B) \n S\nBCZ\t \n \n( e) = A\n D) b\nC B D A\nL2+\n T\n (\n\t ( I )\n \nM\n= C\n\t\n (C)\nFin_A ;\n Polígonos Convexos:\n \nif m import \n( A1 -31 ). R centro. \n \nE | n | ; \nT; a centro.\n;\n \n( Se n par )\n \n\nT mH)\nD M = Ce = (m, ° .... e )\n \nA ( {\n\nT M : E \n\nS n A. N. C .\n\ne \n\n - C0 d +\n1 3 0 - l b . A\n \n\ng (2)\£,+ \n\r{ U}\n = Q .(0e ) ;\n\nd\n1- ( i)\n050( ctr A)0 occ\n\nd |\n\n C\n\n( ( a )\n \n(CAB)\n= 60\nd a I d ; \nπ, in 0\ng = (d A)\n;-\n a, b 4 - s \nM\n \n\n0 L . d I | = | ; \n(ABC)D,A. p\n( m ;N= 6. ad.\n A\n\n\nt ( ) k 1 =\n t (x) = \n = kS\n \n= t \n \n= \n( B ) d \n;\n 04\n\n62)\nB\nα+β+θ=90°\nα=θ=90°\nTgα=mb/mb\nc\n0\n\nΔG=GE=CK=MV\nBC=CE=DK\n\n*mbl= α: (m-1), b= d e m\nm= C+E=m\nC, 0=8.=\n\nc8= 4/1,\nCyo= lern’(ES 1/2 = C ═ REQUISITO.\n\n\n64)\n A\nB\nL2\n15\nl2\n\n ΔA ~ Δl\n\n1,2; 9.15 Pitágoras - Socialtherapia\n(Terminou)\n\n\n# Triângulos Quissquer\n\n1) Teorema dos Cosenos\n\nA\nB\nc\n\nA\n\n18)\n c\na\n\n b\n\ny\n\nZ\n\nx\n\n\n0\n\nx\n\ny\n\nG\n\n\n\nAGOE / B.\n\n0\n\nc\n\nl8)\nd\n\n\n\n(7)\n c\n\nl...(Z)= l\nEq\n\nECPE\n\n]*‐\n\nC. A(BDE), C.l....\n\nC8=b^* + (1- x)^2\n\ncos2k= a\n\nC=cos(7+b)\nc= (ws b.o)= b\n... b\n\nobservações: retorno do Triângulo.

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®