• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia de Alimentos ·

Cálculo 4

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Exercícios - Séries de Fourier - Cálculo 4 - 2023-2

17

Exercícios - Séries de Fourier - Cálculo 4 - 2023-2

Cálculo 4

USP

Lista de Exercicios Resolucao da Equacao de Difusao do Calor Boyce-Diprima

1

Lista de Exercicios Resolucao da Equacao de Difusao do Calor Boyce-Diprima

Cálculo 4

USP

Sequencias Series e Equacoes Diferenciais Resolucao por Series de Potencias

1

Sequencias Series e Equacoes Diferenciais Resolucao por Series de Potencias

Cálculo 4

USP

Transformada de Laplace e Funcoes no Tempo

1

Transformada de Laplace e Funcoes no Tempo

Cálculo 4

USP

Exercicios Resolvidos de Funcoes Trigonometricas - Calculo de Cos

1

Exercicios Resolvidos de Funcoes Trigonometricas - Calculo de Cos

Cálculo 4

USP

Exercícios - Séries de Fourier - Cálculo 4 - 2023-2

17

Exercícios - Séries de Fourier - Cálculo 4 - 2023-2

Cálculo 4

USP

Anotacoes sobre Funcoes e Codigos - Analise Preliminar

1

Anotacoes sobre Funcoes e Codigos - Analise Preliminar

Cálculo 4

USP

Solução de Problemas de Valor de Contorno - Análise e Resolução

1

Solução de Problemas de Valor de Contorno - Análise e Resolução

Cálculo 4

USP

Questão - Séries de Potências - 2023-2

1

Questão - Séries de Potências - 2023-2

Cálculo 4

USP

Lista 2 - Cálculo 4

1

Lista 2 - Cálculo 4

Cálculo 4

USP

Texto de pré-visualização

Lista 12 Equação de difusão do calor extraídos do livro de Boyce e DiPrima Problems In each of Problems 1 through 6 determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations If so find the equations 1 2 3 4 5 6 7 8 9 10 11 12 xx u 0 0 0 px rxuo 0 Find the solution of the heat conduction problem 100xx u 0 x 1 t 0 u0 t 0 u1 t 0 ux 0 sin2πx sin5πx 0 x 1 Find the solution of the heat conduction problem u xx 4 u 0 x 2 t 0 u0 t 0 u2 t 0 t 0 ux 0 2 sinπx 2 sinπx 4 sin2πx 0 x 2 Consider the conduction of heat in a rod 40 cm in length whose ends are maintained at 0 C for all t 0 In each of Problems 9 through 12 find an expression for the temperature ux t if the initial temperature distribution in the rod is the given function Suppose that α2 1 9 ux0 50 0 x 40 10 ux 0 x 0x 20 40 x 20 x 40 11 ux 0 0 0 x 10 50 10 x 30 0 30 x 40 12 ux 0 x 0 x 40 24 In solving differential equations the computations can almost always be simplified by the use of dimensionless variables a Show that if the dimensionless variable ξ x L is introduced the heat conduction equation becomes b Since L2 α2 has the units of time it is convenient to use this quantity to define a dimensionless time variable τ α2 L2 t Then show that the heat conduction equation reduces to 25 Consider the equation au x x bu cu 0 where a b and c are constants a Let ux t e wt wx t where b is constant and find the corresponding partial differential equation for w b If b 0 show that it can be chosen so that the partial differential equation found in part a has no term in w Thus by a change of dependent variable it is possible to reduce equation 25 to the heat conduction equation 26 The heat conduction equation in two space dimensions is c2 u x x u y y u t Assuming that ux y t Xx Yy Tt find ordinary differential equations that are satisfied by Xx Yy and Tt 27 The heat conduction equation in two space dimensions may be expressed in terms of polar coordinates as α2 urt u r u u t Assuming that ur θ t Rr Θθ Tt find ordinary differential equations that are satisfied by Rr Θθ and Tt

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Exercícios - Séries de Fourier - Cálculo 4 - 2023-2

17

Exercícios - Séries de Fourier - Cálculo 4 - 2023-2

Cálculo 4

USP

Lista de Exercicios Resolucao da Equacao de Difusao do Calor Boyce-Diprima

1

Lista de Exercicios Resolucao da Equacao de Difusao do Calor Boyce-Diprima

Cálculo 4

USP

Sequencias Series e Equacoes Diferenciais Resolucao por Series de Potencias

1

Sequencias Series e Equacoes Diferenciais Resolucao por Series de Potencias

Cálculo 4

USP

Transformada de Laplace e Funcoes no Tempo

1

Transformada de Laplace e Funcoes no Tempo

Cálculo 4

USP

Exercicios Resolvidos de Funcoes Trigonometricas - Calculo de Cos

1

Exercicios Resolvidos de Funcoes Trigonometricas - Calculo de Cos

Cálculo 4

USP

Exercícios - Séries de Fourier - Cálculo 4 - 2023-2

17

Exercícios - Séries de Fourier - Cálculo 4 - 2023-2

Cálculo 4

USP

Anotacoes sobre Funcoes e Codigos - Analise Preliminar

1

Anotacoes sobre Funcoes e Codigos - Analise Preliminar

Cálculo 4

USP

Solução de Problemas de Valor de Contorno - Análise e Resolução

1

Solução de Problemas de Valor de Contorno - Análise e Resolução

Cálculo 4

USP

Questão - Séries de Potências - 2023-2

1

Questão - Séries de Potências - 2023-2

Cálculo 4

USP

Lista 2 - Cálculo 4

1

Lista 2 - Cálculo 4

Cálculo 4

USP

Texto de pré-visualização

Lista 12 Equação de difusão do calor extraídos do livro de Boyce e DiPrima Problems In each of Problems 1 through 6 determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations If so find the equations 1 2 3 4 5 6 7 8 9 10 11 12 xx u 0 0 0 px rxuo 0 Find the solution of the heat conduction problem 100xx u 0 x 1 t 0 u0 t 0 u1 t 0 ux 0 sin2πx sin5πx 0 x 1 Find the solution of the heat conduction problem u xx 4 u 0 x 2 t 0 u0 t 0 u2 t 0 t 0 ux 0 2 sinπx 2 sinπx 4 sin2πx 0 x 2 Consider the conduction of heat in a rod 40 cm in length whose ends are maintained at 0 C for all t 0 In each of Problems 9 through 12 find an expression for the temperature ux t if the initial temperature distribution in the rod is the given function Suppose that α2 1 9 ux0 50 0 x 40 10 ux 0 x 0x 20 40 x 20 x 40 11 ux 0 0 0 x 10 50 10 x 30 0 30 x 40 12 ux 0 x 0 x 40 24 In solving differential equations the computations can almost always be simplified by the use of dimensionless variables a Show that if the dimensionless variable ξ x L is introduced the heat conduction equation becomes b Since L2 α2 has the units of time it is convenient to use this quantity to define a dimensionless time variable τ α2 L2 t Then show that the heat conduction equation reduces to 25 Consider the equation au x x bu cu 0 where a b and c are constants a Let ux t e wt wx t where b is constant and find the corresponding partial differential equation for w b If b 0 show that it can be chosen so that the partial differential equation found in part a has no term in w Thus by a change of dependent variable it is possible to reduce equation 25 to the heat conduction equation 26 The heat conduction equation in two space dimensions is c2 u x x u y y u t Assuming that ux y t Xx Yy Tt find ordinary differential equations that are satisfied by Xx Yy and Tt 27 The heat conduction equation in two space dimensions may be expressed in terms of polar coordinates as α2 urt u r u u t Assuming that ur θ t Rr Θθ Tt find ordinary differential equations that are satisfied by Rr Θθ and Tt

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®