·

Matemática ·

Cálculo 2

Send your question to AI and receive an answer instantly

Ask Question

Recommended for you

Preview text

UNIVERSIDADE FEDERAL DO SUL E SUDESTE DO PARÁ INSTITUTO DE ENGENHARIA DO ARAGUAIA CURSO DE LIC EM MATEMÁTICA FORMAPARÁ CASA DE TÁBUA Santa Maria das Barreiras PROFESSOR Osmar Tharlles Borges de Oliveira DISCIPLINA Cálculo 2 1 Exercícios de Cálculo 2 parte 1 1 Determine as seguintes integrais indefinidas a x⁵ 2x² 1 x⁴ dx b 2x 3eˣ dx c sin x cos² x dx d 2 sin² φ φ dφ e ⁴t³ t²⁵ dt f sin3x dx g dt 1 4t² h e2x 2x dx 2 Determine f dados a dydx 8x³ 3x e f2 0 b fx x 1 x e f1 0 ① a x⁵ 2x² 1 x⁴ dx x⁵x⁴ 2x²x⁴ 1x⁴ dx x 2x² x⁴ dx 12 x² 2x¹ 13 x³ C 12 x² 2x 13 x³ C₁ b 2x 3eˣ dx 2 lnx 3eˣ C₁ c sin x cos² x dx duu² u¹ 21 C u¹ C 1cosx C u cosx du sinx dx secx C₁ e ⁴t³ t²⁵ dt t³⁴ t²⁵ dt t341341 t251251 C t7474 t3535 C 47 t74 53 t35 C₁₁ f sin3x dx 13 cos3x C₁₁ g dt 1 4t² 12 sec²θ sec²θ dθ 12 dθ 12 θ C 12 arctg 2t C₁₁ 1 4t² 1 2t² sec²θ 2t tgθ θ arctg2t t 12 tgθ dt 12 sec²θ dθ h e2x 2x dx eᵘ du eᵘ C e2x C₁₁ u 2x du 2 dx 22x dx 2x ② a dydx 8x³ 3x f2 0 dy 8x³ 3x dx yx 84 x⁴ 32 x² C yx 2 x⁴ 32 x² C mas y2 0 0 2 2⁴ 32 2² C C 2 16 32 4 C 32 6 C 26 b dydx x 1 x12 f1 0 dydx x x12 1 x12 dydx x12 x12 dy x12 x12 dx yx x32 321 x121 121 C yx x32 32 x12 12 C f1 0 yx 23 x32 2x12 C mas y1 0 0 23 132 2 112 C C 23 2 C 83 Logo yx 23 x32 2x12 83