·

Cursos Gerais ·

Resistência dos Materiais

Send your question to AI and receive an answer instantly

Ask Question

Preview text

Lista D4-RM\n10.28\nRevolv 45°\nEc= 475,10° Ec1= 360,10°\nEx= Ec1= 475,10° Ex= 36,00° Ey= 2 (250,10°) - 475 + 360 = 385,00°\nE1,2= 475,10° - 360,10° + 148,10° - (360,10°)\n57,3° = 285,94\nE1= 443,84°\nEc= 327,5°\n\n10.29\nRevolv 60°\nEc= Ec= 3(280,10°)\nEc= (1)(400,10°) + 2,500.19 = 7.20666\nEy= 2 (1400 - 500) = 145,147° E1,2\nG=200 kN\nX=100 m\n\nEt0 = 0\n6 - C - 8(1.5 + 3)Fb = 0\n1 - 2 = Fb\nFa = 4 kN\nFb = 4 kN\n\nSegundo AC\nF = 14k(N)Fb = 4kN\nMi + x1 + fa + 6k = 0\nM1 = -2x1\n\nSegundo BC\nV= 0; X1 = 0\n-0 = E1 + Eb = 0\ny\nEc = 3kN/m^2\nFb= 3kN\n\nE1 = 0 Equação de Momentos\nM(A) = Fa * x - 0 - G * x - Fb * x - 2 - 2,\nINT = 0\n\nEt0 = E1\nV(A) = E1 + E2\n\nProdução de momento\nY = 0; X = 0. x = 0; C2 = 0(1)\nx = 8\nFa = 2882 - (24*12)(fa -10) - (EC)6\nx = 1\nE = (8) 3/6\n\n72Fa + 36Fb + 18Fa = 0 12.34\n\nV = -1.2 P = 6,423\nP = 900 - 49.6\n\nE = 12.14\n\nEtx = M / a2\nEty = M / b2\nEty - m / 0\nEty = M / (1/2)\n\n3 L\nEty = E(I)\n1 / 2 L\n\nP = 3L / 2\nM0 = 1/1 + \nV = 1 \n\n3 L = 1\nV = 8% C\nP: m A = 0\nV0 = MA 12.34\n\nP0 + -P + 2 F0 - 3 C2 - 2 P = 0\nm 7 P0 = F0,\nF0 = 7 / 2 P\n + 15 Fy = 0\nF0 - P + 7 P - 2 P = 0\nF0 = P / 2\n\nM = P0 * <x< - 0> + P0 * <x< - α>\n\nEty = F0 <x< - 0> + P0 <x< - α> + F0 <x< - 2 >\n\nV0 = 0; men = 0; α = 0 <=> C1 = C2 = 0\nC2 = 0; C2 = 0.\n\nC1 = P / 2\nF0 = (P0 / 1) <x< P.\n\nV0 = P0 > 0 - x - 0 > - P0 <x< - x - 2 > + 5F0 α2 > 0. 12.47\n20 kN\n\nA'x = -<x< -0'< -1.25 <x< 0 <x< 1.25 <x< 2.25 <x< 3 <x< 4.5>\n\nEt y = <x< -0'< -1.25 <x< 2.25 <x< 3 <x< 2.75 <x< 4.25>\nV: 0.00 cm x = 1.5 x = 41.5\n\nV = 1.5\n\n0 = -1.5(4) + 1.5 P2\n0 = -4.5 + 1.5 P2\n0 = 4.5 - 1.5 P2 = 0\nP2 = 3.0 kN\n\nC1: 1.25 + 1.25\nC2: 1.25,\n0 = 9.75\n\nEty = 15\n\nV = 5 + 1.5(4 - 0) + 1.5 P2\nE = 1.5\n\n0 = 3\n\n3\n\nEty = 3 + <x< - 0' + 1.5 <x< - 2.5>\n2.75 + 1 / 6\n5 C, I = 12\n\n15 12.42\n\n37 kN/m\n\n15 kN/m\n\nD: M_I = 0\n75 - 8 + 2.5 * 15 - 5 * F_A = 0\nF_A = 7.5; F_B = 4.5 kN\n\nM: I = 15 * x^3 / 3 - 3 * x^2 + 3 * x - 5 > 5; 1.35 < x < 5;\nF_B = 15; F_y = 0;\nF_y = 4.5 * x = 3 * x^2 / 6\nx = 5; 3.25 < x < 5;\nV = 0; 0 = 0.1 = 5\nS = 4.5 * (5) - 1.5\nS = 3.75 > 15; x = 3C^2 + 1.6\nV = 1.35 < x < 5; 3 < 5 < 2 < 7\n16 < 6 < 2 < 1 < x^3 < [x < 5; 15 < x < 1; 37 < x < E_I] 12.58\n\n60kN\n\n125\n\nMax E = 600; I = 8; M_a = (0.7^5) + (0.75 + 0.125 + 0.125^2)\nI = 450; I = 9.7 \n36(0.125 + 7.0)\nE = 36.0\n\nDCL = V; H = 4/kN\n\n+FB - FC = 0; FB = -FC + 12 - 15 = 0\nF_B + 27 = FC\n1.5 * F_B - 4.5 * F_E - 10.3 = 0\n45 = F_C + 27; 4.5; F_E - 15 F_B = -0.8\n1.5 * F_B = 4.5 - 10.3 = 0 12.81\n\n30kN/m\n\n60kN/m\n\nVtot: -1.1^2 + 5 * WL^4 = 60; -5 * 30 * E_I;\n-9.1575 * E_I = 7; 8; 3.00; 10; 7.59 10^6; 4.0; 0; 140\n\n12.85; 40 * x^3 l/2 = 0N - 0N; 36 \n0 * (12)^10 + 12 [N -0.1] + 0.3 A^2;\n6E = 841.925002 * 4\n 12Chi + 4y + 0.0081 * EA^12;\n= 3.804731*126 + 4; 6 * 0.6 + 0 = 0 12.106\n\n\n\n12.115\n\n∑MA = -dP + lB + lB = 1A\n\n\n\n12.116\n\n125 HN\n\nA B\n\n\n\nC\n\n1.5\n2\n\n\n3. Fy:\n- 2.15 - 5.43 + FB - 0\nlAB = 1.5\n0 = -5 + 8 + 5 = 0\n6F - dFB = -150\n2AF + FB = 50\n\n\nFc = FB\n\n\n 12.134\n\nA\n\n\t\t\tEF = 0\n\n\tET = 0\n\tFA - FB - 3P = 0\n\n\n\n∑MA = 0\nP - FB; 2x = P\nF0 = 2N\nE - FA + 2P\nFA = 1P\n\n\n\nfA(x): FA < x < 0 -> P < x < 0\nF0 < x < 0 < x < 0 < A < B < 0 < x < 1 < 0\n1 < x < 0.5\n\n4 - 4. x - 2 < A1\n- P < x < - 0.3 2A + 3 < 0 < 1.5 < 2.5 < 2 < 1.0 < 2\n0 = 12\nx = 5.8 b\nG + C = 2\nE + F < 2.5\n\nb6 = 5 < G < 12\n\n\n 12.176\n\n- 9.1 - FA - 0 < 2. 1. - 0\n\t\t\tFA = 1...\n\̷C10\nFA\n- 9FA + 8F0 - 20 = 0\nF0 = 27.8\nFA = 4.5\n\nM(N1): 9.1 < x < 0 + P < 4 - 1.8 - 9.5 + 27.8 + 27.7 < 4.5\n3 <- 2 < 2 < - 2 < 2 <\n1 - 1 + 1 + 1.25 - 1.5 =\n- 5 + 2 =\n1.25. - 15 - 2.1 - 1.75 = 4.5 = 1c\n1.5 < 2 =\nO = -1 + 15 + C + 20 + P + Q/2\n K76\n200N 300mm 500mm\n200N 1A 350N\n\n∑Fy = 0:\nR2D - 350 + FA + FB = 0\nMA:\n300 * 0.2 - 350 * 0.2 + FA * 0 = 0\nFB = 5N\nFA: 12.175 N\n\nM(A): 400 * 121.175 * x - 0.2 - 350 x - 0.5 = \n400 * (121.75 * 0.2) - 350 * (1.5 - 0.5) = 0\n\nV = 0 = 0.2:\n0 = 400 * 12.175 * (1.2)\n\n0 = 400 * 12.175 * (0.5) + e1 + e0.5 = e2\n\n400 * 10 = 24(0.1)\n400 * (12.175 * 0.5)\n\n 12.9\n300N - m\n60kN - m\n\nVmax = -530 * e\n768.1 = ET\n\nVmax = -60.6\nR.91 = ET\n\nVmax = 253.175 + 197.6 + 236.68 = 291.68\nET\nET\nET 14.7\n∑Fy = 0\nFA = 50.0\nFA = 30.0\n\n∑MA = 0:\nFB - 4 - 30 = 0\nFB = 390 15.15 kN\nFA = (5kN)\n\n∑AC = 141.78: A = 400 mm²\n\n5kN @ 45°\nPorto 1\nFco = Fda = 0\nFda = 0\nFco = 10kN\n\nVA = 0 - 5 = 0\n5 * Fcb + FA1.3 = 0\n\nD = 0 0 2 3\n\nDC 0 0\nCA 12.5°\nBA 10 2\nCB 40 15° 400kN\n400kN\n\nT: Fa=Fb=80\n\nI \nA\n15\n\n1 Δ: ∫(40-15) \n\n0 M(x)=40-x1\n\nm(x)=0\n\n0.5x\n\n1- Δ: ∫(mA-m) dx\n\nET\n0\n0\n\nΔ: 5\n\nET\n200.90*10^6\n\nΔ=3.3B1*10^-3 (m)\n H. 091\n\n(k)(k*m)\n1.21(k-m)\n\nM1|A1\nm1=0\n\n0\n\nII\nM2|A2\nm2=0.95x2\nm2=0.5x0\n\n0\n\nI\nII\n\nM3|A3\nm3=0\n\n0\n\nΔ: 2.40ΔS\n\nεI: 1.25 x 10^-2 - 200.10^-1\n\n3.74 mm