·
Engenharia Civil ·
Análise Estrutural
Send your question to AI and receive an answer instantly
Recommended for you
17
Ejercicios Modelos Resueltos
Análise Estrutural
UMG
5
Juliano Geraldo - Isostatica P2
Análise Estrutural
UMG
74
Introducao Mecanica Estruturas U1
Análise Estrutural
UMG
5
Planteo Y Resoluc Ejercicio N 50
Análise Estrutural
UMG
11
2 Tp Teo Est 2 1 2010
Análise Estrutural
UMG
11
Análise das Estruturas - Tabela de Engastamento Perfeito - Método dos Deslocamentos
Análise Estrutural
UMG
4
Viga Gerber com Cinco Apoios
Análise Estrutural
UMG
2
Questões Resolvidas - Reações de Apoio
Análise Estrutural
UMG
7
Exemplo Resolvido Soriano 2 1 Metodo das Forças
Análise Estrutural
UMG
6
Av1 Teoria das Estruturas 1
Análise Estrutural
UMG
Preview text
Appendix B\nDisplacements of prismatic members\nThe following table gives the displacements in beams of constant flexural rigidity EI and constant torsional rigidity GJ, subjected to the loading shown on each beam. The positive directions of the displacements are downward for translation, clockwise for rotation. The deformations due to shearing forces are neglected.\n\nq per unit length\n\nf1 = 5q l 4 / 384 EI (B.1)\nf2 = f3 = 19q l 4 / 2048 EI (B.2)\nf4 = -f5 = q l 3 / 24 EI (B.3)\nf6 = -qx / 24 EI( l 3 - 2l 2 x + x 3 ) (B.4)\n\nf1 = P(l - b)x / 6 EI (2l - b 2 - x 2 ) when x << b (B.5)\nf1 = Pb(l - x) / 6 EI (2l x - x 2 - b 2 ) when x >> b (B.6)\nf2 = Pb(l - b) / 6 EI (2l - b 2 ) (B.7)\nf3 = -Pb / 6 EI (l 2 - b 2 ) (B.8)\n\nWhen b = l/2, f2 = f3 = P l / (16 EI), and f1 = P l 3 / 48 EI at x = l / 2 (B.8) Appendix B 753\n\nf1 = MI / 3 EI (B.9)\nf2 = MI / 6 EI (B.10)\nf3 = 15M 2 / 384 EI (B.11)\nf4 = M 2 / 16 EI (B.12)\nf5 = 21M 2 / 384 EI (B.13)\n\nf1 = MI / 4 EI (B.14)\nf2 = -9M 2 / 256 EI (B.15)\nf3 = -32 MI / EI (B.16)\nf4 = -3M 2 / 256 EI (B.17)\n\nf1 = TI / GJ (B.18)\n(Effect of warping ignored)\nf1 = P l 3 / 3 EI (B.19)\nf2 = P l 2 / 2 EI (B.20)\nf4 = f1 + df2 (B.21)\nf3 = P l 3 / 3 EI (1 - 3b / 2 l 2 + b 3 / 2 β) (B.22) for 0 ≤ b ≤ l\n\nf1 = q l 4 / 192 EI (B.23)\nf2 = -q l 3 / 48 EI (B.24) 754 Appendix B\n\nf1 = 7P l 3 / 768 EI (B.25)\nf2 = P l 2 / 32 EI (B.26)\n\nq per unit length\n\nf1 = q l 4 / 8 EI (B.27)\nf2 = q l 3 / 6 EI (3ξ 3 - 3ξ 2 + ξ 3 ) (B.28)\nf3 = q l 4 / 24 EI (θ 2 - 4θ 3 + θ 4 ) (B.29)\n\nf1 = M l 2 / EI β(1 - 0.5β) (B.30)\nf2 = [M/EI / (EI) with ξ ≤ β\nM / EI / (EI) with β ≤ ξ ≤ 1 (B.31)\nf3 = M(β) 2 / (EI) with ξ ≤ β (B.32) with β ≤ ξ ≤ 1\n\nf1 = q l 2 / 24 EI β 2 ξ(2 - β 2 - 2ξ 2 ) (B.33)\nf2 = q l 4 / 384 EI β 3 (32 - 39β + 12β 2 ) (B.34)\nf3 = q l 3 / 24 EI β 2 (2 - β 2 ) (B.35)\nf4 = -q l 3 / 24 EI β 2 (4 - 4β + β 2 ) (B.36) Appendix B 755\n\nM\n\nf1 = -f2 = -M I / 2 E I (B.37)\n\nf3 = -M x(l - x) / 2 E I (B.38)\n\nf4 = -M I^2 / 8 E I (B.39)\n\nf1 = \u03c8 / 8 (B.39)\n\nf2 = \u03c8 x(l - x) / 2 (B.40)\n\nf3 = -f4 = \u03c8 l / 2 (B.41)\n\nBeam depth\n\n\u03c8 = curvature\n\nThermal expansion (strain)
Send your question to AI and receive an answer instantly
Recommended for you
17
Ejercicios Modelos Resueltos
Análise Estrutural
UMG
5
Juliano Geraldo - Isostatica P2
Análise Estrutural
UMG
74
Introducao Mecanica Estruturas U1
Análise Estrutural
UMG
5
Planteo Y Resoluc Ejercicio N 50
Análise Estrutural
UMG
11
2 Tp Teo Est 2 1 2010
Análise Estrutural
UMG
11
Análise das Estruturas - Tabela de Engastamento Perfeito - Método dos Deslocamentos
Análise Estrutural
UMG
4
Viga Gerber com Cinco Apoios
Análise Estrutural
UMG
2
Questões Resolvidas - Reações de Apoio
Análise Estrutural
UMG
7
Exemplo Resolvido Soriano 2 1 Metodo das Forças
Análise Estrutural
UMG
6
Av1 Teoria das Estruturas 1
Análise Estrutural
UMG
Preview text
Appendix B\nDisplacements of prismatic members\nThe following table gives the displacements in beams of constant flexural rigidity EI and constant torsional rigidity GJ, subjected to the loading shown on each beam. The positive directions of the displacements are downward for translation, clockwise for rotation. The deformations due to shearing forces are neglected.\n\nq per unit length\n\nf1 = 5q l 4 / 384 EI (B.1)\nf2 = f3 = 19q l 4 / 2048 EI (B.2)\nf4 = -f5 = q l 3 / 24 EI (B.3)\nf6 = -qx / 24 EI( l 3 - 2l 2 x + x 3 ) (B.4)\n\nf1 = P(l - b)x / 6 EI (2l - b 2 - x 2 ) when x << b (B.5)\nf1 = Pb(l - x) / 6 EI (2l x - x 2 - b 2 ) when x >> b (B.6)\nf2 = Pb(l - b) / 6 EI (2l - b 2 ) (B.7)\nf3 = -Pb / 6 EI (l 2 - b 2 ) (B.8)\n\nWhen b = l/2, f2 = f3 = P l / (16 EI), and f1 = P l 3 / 48 EI at x = l / 2 (B.8) Appendix B 753\n\nf1 = MI / 3 EI (B.9)\nf2 = MI / 6 EI (B.10)\nf3 = 15M 2 / 384 EI (B.11)\nf4 = M 2 / 16 EI (B.12)\nf5 = 21M 2 / 384 EI (B.13)\n\nf1 = MI / 4 EI (B.14)\nf2 = -9M 2 / 256 EI (B.15)\nf3 = -32 MI / EI (B.16)\nf4 = -3M 2 / 256 EI (B.17)\n\nf1 = TI / GJ (B.18)\n(Effect of warping ignored)\nf1 = P l 3 / 3 EI (B.19)\nf2 = P l 2 / 2 EI (B.20)\nf4 = f1 + df2 (B.21)\nf3 = P l 3 / 3 EI (1 - 3b / 2 l 2 + b 3 / 2 β) (B.22) for 0 ≤ b ≤ l\n\nf1 = q l 4 / 192 EI (B.23)\nf2 = -q l 3 / 48 EI (B.24) 754 Appendix B\n\nf1 = 7P l 3 / 768 EI (B.25)\nf2 = P l 2 / 32 EI (B.26)\n\nq per unit length\n\nf1 = q l 4 / 8 EI (B.27)\nf2 = q l 3 / 6 EI (3ξ 3 - 3ξ 2 + ξ 3 ) (B.28)\nf3 = q l 4 / 24 EI (θ 2 - 4θ 3 + θ 4 ) (B.29)\n\nf1 = M l 2 / EI β(1 - 0.5β) (B.30)\nf2 = [M/EI / (EI) with ξ ≤ β\nM / EI / (EI) with β ≤ ξ ≤ 1 (B.31)\nf3 = M(β) 2 / (EI) with ξ ≤ β (B.32) with β ≤ ξ ≤ 1\n\nf1 = q l 2 / 24 EI β 2 ξ(2 - β 2 - 2ξ 2 ) (B.33)\nf2 = q l 4 / 384 EI β 3 (32 - 39β + 12β 2 ) (B.34)\nf3 = q l 3 / 24 EI β 2 (2 - β 2 ) (B.35)\nf4 = -q l 3 / 24 EI β 2 (4 - 4β + β 2 ) (B.36) Appendix B 755\n\nM\n\nf1 = -f2 = -M I / 2 E I (B.37)\n\nf3 = -M x(l - x) / 2 E I (B.38)\n\nf4 = -M I^2 / 8 E I (B.39)\n\nf1 = \u03c8 / 8 (B.39)\n\nf2 = \u03c8 x(l - x) / 2 (B.40)\n\nf3 = -f4 = \u03c8 l / 2 (B.41)\n\nBeam depth\n\n\u03c8 = curvature\n\nThermal expansion (strain)