·

Engenharia Civil ·

Cálculo 3

Send your question to AI and receive an answer instantly

Ask Question

Preview text

an1 fracn2n122 fracn2n22n3 an an1 fracn1n22 geq fracn2n22n3 n1n22n3 n22n2 n32n23nn2 n32n22n4 n25n3 2n4 n23 1 A seq é monótona decrescente r frac21x3 frac37x frac72 frac7x cdot fracx2x23 x23 2x x22x30 s2 x1 x3 para convergir r 1 então x3 sum frac3n5n cdot 2n comparaçao c a série como sum frac12n limn o infty frac3n5n2 limn o infty frac35n2n 3 p 0 CONSENSO As duas convergem sum1infty fracn3n an fracn3n an1 fracn13n limn o infty fracan1an limn o infty fracn1n cdot frac13 frac13 A série diverge se p 1 diverge sum 1 extresto da integral 2n13 fx 2x1 lima o infty inta0 2x1 int u du lima o infty frac142x12 frac14 inta o infty lima o infty 1 frac12a12 frac136 Se a integral converge a série tb converge Cn frac5n3 3n35n3 3n3 Cn 5n1 3n1 1 leftfrac35rightn1 1 limn o infty leftfrac35rightn1 frac125 limn o infty left1 leftfrac35rightnright frac125 ext conv dn leftfrac1nnright dn 1n cdot frac1n limn o infty 1 0 ext and limn o infty 1 0 ext conv an frac1sqrtn21n limn o infty frac1sqrtn21n sqrtn21n limn o infty sqrtn21n infty extDiv bn fracn2n2n3n4 limn o infty n2n4n2n3 limn o infty fracn24n23n2n3n4 frac7n2n12 ext conve sumn1infty frac53n13n2 frac53n13n2 fracA3n1 fracB3n2 5 A3n2 B3n1 5 3An 2A 3Bn B 5 3A 3Bn 2A B 3A 3B 0 Rightarrow A B 2A B 5 B 5 2A rightarrow B 5 2A 3B 5 Rightarrow B frac53 2A 5 A frac53 extFinal Values B 5 A 5 extThis implies the calculation for the series converges