• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia de Alimentos ·

Cálculo 4

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Calculo IV FZEA USP - Series de Fourier Cossenos e Senos

1

Calculo IV FZEA USP - Series de Fourier Cossenos e Senos

Cálculo 4

USP

Lista de Exercícios - Função Degrau - Boyce e DiPrima

1

Lista de Exercícios - Função Degrau - Boyce e DiPrima

Cálculo 4

USP

Resolucao-de-Equacoes-Diferenciais-Lineares-com-Condicoes-de-Fronteira

5

Resolucao-de-Equacoes-Diferenciais-Lineares-com-Condicoes-de-Fronteira

Cálculo 4

USP

Lista de Exercícios - Resolução de EDO com Transformada de Laplace - Boyce e DiPrima

1

Lista de Exercícios - Resolução de EDO com Transformada de Laplace - Boyce e DiPrima

Cálculo 4

USP

P1 Calculo 04

1

P1 Calculo 04

Cálculo 4

USP

Questão - Pvi com Série de Potência - 2023-2

3

Questão - Pvi com Série de Potência - 2023-2

Cálculo 4

USP

Formulas-e-Exemplos-de-Serie-de-Fourier-Calculo-IV-FZEA-USP

1

Formulas-e-Exemplos-de-Serie-de-Fourier-Calculo-IV-FZEA-USP

Cálculo 4

USP

Anotacoes Fepol Calculos e Numeros Diversos

1

Anotacoes Fepol Calculos e Numeros Diversos

Cálculo 4

USP

Lista de Exercícios - Equação de Laplace - Problemas Resolvidos Boyce e DiPrima

2

Lista de Exercícios - Equação de Laplace - Problemas Resolvidos Boyce e DiPrima

Cálculo 4

USP

Lista 1 - Cálculo 4

1

Lista 1 - Cálculo 4

Cálculo 4

USP

Texto de pré-visualização

Lista de exercicios 3 — Equacdo de Euler (do livro de Boyce e Di Prima) Problems In each of Problems | through 8, determine the general solution of the In each of Problems 9 through 11, find the solution of the given initial- given differential equation that is valid in any interval not including value problem. Plot the graph of the solution and describe how the the singular point. solution behaves as x — 0. 1. xy" +4xy’ +2y =0 @ 9. 2x?y"4+xy'-3y=0, y=1, yl) =4 2. (x +1)?y" +3(x + ly’ +0.75y = 0 © 10. 4x°y"+8xy’+17y=0, y() =2, y() =-3 3. xy” —3xy’ +4y =0 @ ll. x’y"—3xy'+4y=0, y(-1) =2, y(-1) =3 4, x°y”—xy'+y=0 In each of Problems 12 through 23, find all singular points of the given 5. x?y"+ 6xy’—y =0 equation and determine whether each one is regular or irregular. 6. 2x?y" — 4xy’ + 6y = 0 12. xy”+(1—x)y’+xy =0 7. xy ~ Say’ 9y = 0 / 13. x2(1 — x)*y" + 2xy’ +4y =0 8. (x —2)*y" +5(x — 2) y+ 8y =0 2 _ ” _ yo _ Co 14, x81 —x)y" + (x ~ 2y! — 3xy = 0 form }~ a,x". Show that (except for constant multiples) there is only 2 =0 2 2) ,,/ / _— n IS. x81 —x*)y" + (2) yit4y=0 one nonzero solution of this form in Problem 30 and that there are ayo oy _ no nonzero solutions of this form in Problem 31. Thus in neither case 16. C vy + x vy +U+xHy=0 ; can the general solution be found in this manner. This is typical of 17. x*y”+xy' +(x* —v*)y =0 (Bessel equation) equations with singular points. 18. (x +2)7(x — ly” + 3(« — Dy’ — (x +-2)y =0 30. 2xy" +3y’+xy =0 19. x(3—x)y"+(x+)y’-2y =0 31. 2x?y"4+3xy’-(1+x)y =0 20. xy” +e*y’ + (3cosx)y =0 32. Singularities at Infinity. The definitions of an ordinary point 21.) y”+(In|x|) yy’ + 3xy =0 and a regular singular point given in the preceding sections apply 22. (sinx)y"” +xy' +4y =0 only if the point xo is finite. In more advanced work in differential 3B . 4 3y! =0 equations, it is often necessary to consider the point at infinity. This > (xsinx)y" +3y +xy = is done by making the change of variable € = 1/x and studying the 24, Find all values of a for which all solutions of resulting equation at € = 0. Show that, for the differential equation xy" + axy! + = 0 approach zero as x > 0. P(x)y” + OC) y' + R(x) y = 0, 25. Find all values of 3 for which all solutions of the point at infinity is an ordinary point if x?y” + By = 0 approach zero as x > 0. . . ae 1 2P(1/g) — Q(1/£) RU/8) 26. Find ¥ so that the solution of the initial-value problem PaUaA\ ee and APD x?y"” —2y =0, y(1) = 1, y'(1) =7 is bounded as x > 0. (1/8) g g g*PC1/§) 27. Consider the Euler equation x7y” + axy’ + Gy = 0. Find have Taylor series expansions about € = 0. Show also that the point at conditions on a and 3 so that: infinity is a regular singular point if at least one of the above functions a. All solutions approach zero as x > 0. does not have a Taylor series expansion, but both b. All solutions are bounded as x > 0. é 2P(1/é) Q(1/) R(A/E) c. All solutions approach zero as x — oo. DTA Geo - ou) and = PC 2 2P(1 d. All solutions are bounded as x — ov. C/6) $ é g°PC1/6) e. All solutions are bounded both as x — 0 and as x > w. do have such expansions. 28. Using the method of reduction of order, show that if r; is a —_In each of Problems 33 through 37, use the results of Problem 32 to repeated root of determine whether the point at infinity is an ordinary point, a regular ingul int. i lar singul int of the given differential rr—l) tar¢6=0, singular point, or an irregular singular point of the given differenti equation. then x”! and x"! In x are solutions of x?y"+axy’+Gy =Oforx>0. 33, y"+y=0 29. Verify that W[x* cos(j Inx), x* sin(ye Inx)] = ppx?—!, 34. x?y” + xy’ —4y =0 In each of Problems 30 and 31, show that the point x= Oisa 35. (1—x?)y” —2xy’ Hala tly =0 (Legendre equation) regular singular point. In each problem try to find solutions of the 36. y’—2xy’'+Ay=0 (Hermite equation) 37. y’—xy =0_ (Airy equation)

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Calculo IV FZEA USP - Series de Fourier Cossenos e Senos

1

Calculo IV FZEA USP - Series de Fourier Cossenos e Senos

Cálculo 4

USP

Lista de Exercícios - Função Degrau - Boyce e DiPrima

1

Lista de Exercícios - Função Degrau - Boyce e DiPrima

Cálculo 4

USP

Resolucao-de-Equacoes-Diferenciais-Lineares-com-Condicoes-de-Fronteira

5

Resolucao-de-Equacoes-Diferenciais-Lineares-com-Condicoes-de-Fronteira

Cálculo 4

USP

Lista de Exercícios - Resolução de EDO com Transformada de Laplace - Boyce e DiPrima

1

Lista de Exercícios - Resolução de EDO com Transformada de Laplace - Boyce e DiPrima

Cálculo 4

USP

P1 Calculo 04

1

P1 Calculo 04

Cálculo 4

USP

Questão - Pvi com Série de Potência - 2023-2

3

Questão - Pvi com Série de Potência - 2023-2

Cálculo 4

USP

Formulas-e-Exemplos-de-Serie-de-Fourier-Calculo-IV-FZEA-USP

1

Formulas-e-Exemplos-de-Serie-de-Fourier-Calculo-IV-FZEA-USP

Cálculo 4

USP

Anotacoes Fepol Calculos e Numeros Diversos

1

Anotacoes Fepol Calculos e Numeros Diversos

Cálculo 4

USP

Lista de Exercícios - Equação de Laplace - Problemas Resolvidos Boyce e DiPrima

2

Lista de Exercícios - Equação de Laplace - Problemas Resolvidos Boyce e DiPrima

Cálculo 4

USP

Lista 1 - Cálculo 4

1

Lista 1 - Cálculo 4

Cálculo 4

USP

Texto de pré-visualização

Lista de exercicios 3 — Equacdo de Euler (do livro de Boyce e Di Prima) Problems In each of Problems | through 8, determine the general solution of the In each of Problems 9 through 11, find the solution of the given initial- given differential equation that is valid in any interval not including value problem. Plot the graph of the solution and describe how the the singular point. solution behaves as x — 0. 1. xy" +4xy’ +2y =0 @ 9. 2x?y"4+xy'-3y=0, y=1, yl) =4 2. (x +1)?y" +3(x + ly’ +0.75y = 0 © 10. 4x°y"+8xy’+17y=0, y() =2, y() =-3 3. xy” —3xy’ +4y =0 @ ll. x’y"—3xy'+4y=0, y(-1) =2, y(-1) =3 4, x°y”—xy'+y=0 In each of Problems 12 through 23, find all singular points of the given 5. x?y"+ 6xy’—y =0 equation and determine whether each one is regular or irregular. 6. 2x?y" — 4xy’ + 6y = 0 12. xy”+(1—x)y’+xy =0 7. xy ~ Say’ 9y = 0 / 13. x2(1 — x)*y" + 2xy’ +4y =0 8. (x —2)*y" +5(x — 2) y+ 8y =0 2 _ ” _ yo _ Co 14, x81 —x)y" + (x ~ 2y! — 3xy = 0 form }~ a,x". Show that (except for constant multiples) there is only 2 =0 2 2) ,,/ / _— n IS. x81 —x*)y" + (2) yit4y=0 one nonzero solution of this form in Problem 30 and that there are ayo oy _ no nonzero solutions of this form in Problem 31. Thus in neither case 16. C vy + x vy +U+xHy=0 ; can the general solution be found in this manner. This is typical of 17. x*y”+xy' +(x* —v*)y =0 (Bessel equation) equations with singular points. 18. (x +2)7(x — ly” + 3(« — Dy’ — (x +-2)y =0 30. 2xy" +3y’+xy =0 19. x(3—x)y"+(x+)y’-2y =0 31. 2x?y"4+3xy’-(1+x)y =0 20. xy” +e*y’ + (3cosx)y =0 32. Singularities at Infinity. The definitions of an ordinary point 21.) y”+(In|x|) yy’ + 3xy =0 and a regular singular point given in the preceding sections apply 22. (sinx)y"” +xy' +4y =0 only if the point xo is finite. In more advanced work in differential 3B . 4 3y! =0 equations, it is often necessary to consider the point at infinity. This > (xsinx)y" +3y +xy = is done by making the change of variable € = 1/x and studying the 24, Find all values of a for which all solutions of resulting equation at € = 0. Show that, for the differential equation xy" + axy! + = 0 approach zero as x > 0. P(x)y” + OC) y' + R(x) y = 0, 25. Find all values of 3 for which all solutions of the point at infinity is an ordinary point if x?y” + By = 0 approach zero as x > 0. . . ae 1 2P(1/g) — Q(1/£) RU/8) 26. Find ¥ so that the solution of the initial-value problem PaUaA\ ee and APD x?y"” —2y =0, y(1) = 1, y'(1) =7 is bounded as x > 0. (1/8) g g g*PC1/§) 27. Consider the Euler equation x7y” + axy’ + Gy = 0. Find have Taylor series expansions about € = 0. Show also that the point at conditions on a and 3 so that: infinity is a regular singular point if at least one of the above functions a. All solutions approach zero as x > 0. does not have a Taylor series expansion, but both b. All solutions are bounded as x > 0. é 2P(1/é) Q(1/) R(A/E) c. All solutions approach zero as x — oo. DTA Geo - ou) and = PC 2 2P(1 d. All solutions are bounded as x — ov. C/6) $ é g°PC1/6) e. All solutions are bounded both as x — 0 and as x > w. do have such expansions. 28. Using the method of reduction of order, show that if r; is a —_In each of Problems 33 through 37, use the results of Problem 32 to repeated root of determine whether the point at infinity is an ordinary point, a regular ingul int. i lar singul int of the given differential rr—l) tar¢6=0, singular point, or an irregular singular point of the given differenti equation. then x”! and x"! In x are solutions of x?y"+axy’+Gy =Oforx>0. 33, y"+y=0 29. Verify that W[x* cos(j Inx), x* sin(ye Inx)] = ppx?—!, 34. x?y” + xy’ —4y =0 In each of Problems 30 and 31, show that the point x= Oisa 35. (1—x?)y” —2xy’ Hala tly =0 (Legendre equation) regular singular point. In each problem try to find solutions of the 36. y’—2xy’'+Ay=0 (Hermite equation) 37. y’—xy =0_ (Airy equation)

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®