• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia Civil ·

Concreto Armado 2

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Review Completa: ELF BAR Disposable Vape Pen - Sabores e Onde Comprar

1

Review Completa: ELF BAR Disposable Vape Pen - Sabores e Onde Comprar

Concreto Armado 2

UEM

Calculo de Laje Nervurada - Quantidade de Aço em Nervuras e Cargas em Pilares

1

Calculo de Laje Nervurada - Quantidade de Aço em Nervuras e Cargas em Pilares

Concreto Armado 2

UEM

4 Ex Concreto 2

2

4 Ex Concreto 2

Concreto Armado 2

UEM

1 Exercício para Estudo

7

1 Exercício para Estudo

Concreto Armado 2

UEM

Listas de Concreto 2

10

Listas de Concreto 2

Concreto Armado 2

UEM

Prova de Concreto II - Lajes Nervuradas

44

Prova de Concreto II - Lajes Nervuradas

Concreto Armado 2

UEM

Concreto 2

6

Concreto 2

Concreto Armado 2

UEM

Texto de pré-visualização

EXERCICIO 1 60 Considere a planta parcial de formas indicandose o pilar P1 e as vigas V1 V2 e V3 Cada uma das vigas solicitam o pilar por uma carga axial de compressão com valores caracteristicos iguais a V1 550 kN V2 300 kN e V3 480 kN O momento fletor de primeira ordem na direção do eixo horizontal do pilar ou em torno do eixo vertical tem valor característico igual a 2500 kNcm e na direção vertical do pilar o momento de primeira ordem tem valor característico igual a 2800 kNcm Comprimento equivalente em ambas as direções igual a 420 cm e fck de 35 MPa Calcular a Valores da esbeltezlimite do pilar b A excentricidade máxima de segunda ordem em ambas as direções do pilar pelo método do pilarpadrão com curvatura aproximada c Valores dos esforços para o dimensionamento do pilar força normal e momentos fletores EXERCICIO 2 20 Para o pilar parede indicado com espessura de 25 cm calcular o valor da carga que o torna deslocável segundo o método simplificado do parâmetro alfa a Considerar edifício com 15 pavimentos sendo o pédireito de 3 m Concreto com resistência característica à compressão de 35 MPa EXERCICIO 3 20 Qual seria o valor de momento fletor de primeira ordem transmitido pelas vigas ao pilar indicado que tem seção de 25x70 cm A distância vertical entre as vigas do pavimento inferior e superior é de 460 cm entre as faces superiores de cada viga A viga contínua V4 tem seção de 12x52 cm e a viga V2 que termina no pilar tem seção de 20x62 cm e carregamento uniforme de 25 kNm valor característico e comprimento teórico igual a 350 m valor a ser usado nos cálculos EXERCÍCIO 1 Considere calcular uma laje nervurada prémoldada unidirecional e nervura de concreto armado para o fechamento do vão da planta de formas indicada A carga de utilização sobre a laje é de 15 kNm² e será revestida com argamassa 18 kNm³ na face superior 4 cm de espessura e na face inferior com uma espessura de 2 cm O material de enchimento deve ser do tipo EPS com espessura h de 95 cm e largura b igual a 32 cm A largura da base de concreto da nervura é igual a 12 cm Considerar concreto C25 aço CA50 vãos teóricos Calcular A O momento fletor de dimensionamento da armadura da nervura em kNm B O valor de armadura de flexão na vigota em cm² C Detalhamento da armadura da laje EXERCÍCIO 2 Para a viga V101 que está engastada no pilar parede da planta indicada calcular a quantidade de barras da armadura longitudinal que são necessárias para resistir ao efeito de torção na seção transversal A viga V101 tem seção de 20 x 55 cm e as vigas V102 e V103 têm seção de 15 x 25 cm Considerar peso próprio do concreto igual a 25 kNm³ e peso próprio da alvenaria igual a 13 kNm³ Sobre as vigas V102 e V103 consta parede de alvenaria com altura de 15 m e sobre a viga V101 a alvenaria tem altura de 280 m O cobrimento do concreto da armadura da V101 é de 30 mm Considerar bitola de 10 mm para a armadura longitudinal de torção e bitola de 63 mm para os estribos Concreto C25 e aço CA50 EXERCÍCIO 1 40 Considere a laje prémoldada com nervura treliçada posicionada na direção do menor vão A carga de utilização sobre a laje é de 15 kNm² e deve ser revestida com argamassa 18 kNm³ na face superior 4 cm de espessura e na face inferior espessura de 2 cm O material de enchimento deve ser do tipo EPS 8 kNm³ com espessura h de 95 cm e largura b igual a 32 cm A largura da base de concreto da nervura é igual a 12 cm A laje deve ter espessura de capa de concreto com valor mínimo recomendado em norma técnica Considerar concreto C25 aço CA50 vãos teóricos para os cálculos Pedese A O momento fletor de dimensionamento da armadura da nervura em kNm B O valor de armadura de flexão complementar na vigota em cm² considerando treliça TB8M com 604250 de diâmetro para a barra superior diagonal e inferior respectivamente C O detalhamento da armadura necessária para a laje EXERCÍCIO 2 35 Para a seção transversal indicada solicitada por um momento de torção de valor característico igual a 300 kNm determinar a quantidade de barras longitudinais necessárias em cada face lateral para resistir com segurança ao efeito da torção Considerar cobrimento de concreto da armadura igual a 40 mm estribo de 10 mm de diâmetro e barras longitudinais de 125 mm de diâmetro O aço é o CA50 e a inclinação da biela comprimida de concreto é aquela do modelo 1 de cálculo da armadura transversal O concreto tem fck de 40 MPa EXERCÍCIO 3 25 Considerar a laje lisa indicada na Figura que segue O cobrimento da armadura da laje é de 30 mm e a carga de compressão do pilar interno e com carregamento simétrico é de 900 kN de valor característico e concreto fck de 25 MPa Verificar o efeito da punção na laje e caso necessário definir o valor mínimo de fck para garantia da segurança em Estado limite último relacionado com a resistência à compressão da diagonal de concreto na superfície crítica C relacionado ao efeito da punção Valores iniciais Nk55030048013300 KN My2500KN cm Mx2800KN cm Temos que as excentricidades de primeira ordem são e1 y Nd Myd 1413300 1 42500 053cm e1 x Nd Mx d1413300 142800 047 cm a Valores de esbeltez limite Direção x λ1 x 2512 5e1x hx αb 2512 5047 40 0 4 6287 Direção y λ1 y 2512 5e1 y h y αb 2512 5053 22 04 6325 b Determinação da excebtricidade de segunda ordem Direção x v Nd Acfcd 1 41330014 442235 077 Curvatura aproximada 1 r 0005 hxv05 0005 440770500000894c m 1 e 2x l 2 10 1 r 420 2 10 00000894158cm Direção y v Nd Acfcd 1 41330014 442235 077 Curvatura aproximada 1 r 0005 h yv05 0005 22077050000178cm 1 e 2 y l 2 10 1 r 420 2 10 0000178316cm c Força normal de calculo NdNkγd13301418620 KN Momento na direção x Md tot xαbγdMxNde 2x Md tot x0414280018620158450996 KN cm Momento na direção y Md tot yαbγdMyNde2 y Md tot x0414250018620316728392KN cm Temos que o momento de inércia do pilar é I pilarhb 3 12 7025 3 12 9114583c m 4 O raio de giração do pilar é r pilarI pilar l 9114583 460 19814 cm 3 Temos que o momento de inercia da viga V2 é I vigabh 3 12 2062 3 12 39721333 cm 4 O raio de giração da viga é r viga I viga l viga 39721333 350 1134 89 cm 3 O momento de engaste perfeito entre viga e pilar é M engql vig a 2 12 2535 2 12 2552KN m25520KN cm Assim o momento característico de primeira ordem é Mk M engr pilar 2r pilarr viga Mk 2552019814 2198141134 8933024 KN cm Levantamento das cargas externas Cargade ocupação15 KN m 2 Cargade revestimentode argamassa18004002108 KN m 2 Cargado EPS80095076 KN m 2 O peso total característica será qk15108076334 KN m 2 a Momento de dimensionamento da armadura Temos que a área de influencia de cada vigota é Ainflubl038502197m 2 A carga distribuída sobre a vigota é QkqkA influ l 334197 52 127 KN m Assim temos que o momento fletor de calculo será Md γdQkl 2 8 1412752 2 8 60 KN m6000KN cm b Calculo da armadura da vigota KMD M d bwd 2fcd 600014 1295 225 031 As Md dfydKZ 600115 955007601191c m 2 Adotando 3 barras de 10mm de diâmetro temos uma área de 236cm2 c Detalhamento Cargas nas vigas V103 e V102 Peso próprio01502525094 KN m Pesoalvenaria1315015292 KN m A carga total será qk094292386 KN m Carga de apoio da viga V103 na viga V101 q31qkl3862772 KN O momento de engaste na viga 101 é M 3 1qkl 2 2 3862 2 2 772KN m Carga de apoio da viga V102 na viga V101 q21qkl386124 63KN O momento de engaste na viga 101 é M 21qkl 2 2 38612 2 2 278KN m Cargas na viga V101 Peso próprio0205525275 KN m Pesoalvenaria1328027 28 KN m A carga total será qk2757 281003 KN m O esquema estático da viga será O diagrama de momento fletor é O diagrama de esforço cortante é O diragama de momento torçor é Assim temos que os valores característicos de calculo são Momento fletor Mk1777 KN m Força cortante Vk624 KN Momento torçor Tk7 7 KN m Agora vamos dimensionar a área efetiva A205511000c m 2 u2bh222551540cm he A u 1100 154 714cm A área efetiva será Aebwhehhe Ae2271455714 7112cm 2 ue2bwhe hhe ue222714 55714 12544 cm Armadura longitudinal de torção Asl Tdsue 2Aefydtgθ Asl147710012544115 2711250tg 45 218c m 2 Para barras de 10mm de diâmetro temos que o numero de barras é n 218 07852773barras Armadura transversal de torção As Tdstgθ 2Aefyd Asl7710014tg 45 2711250 151cm 2m Para barras de 63mm de diâmetro temos que barras a cada 20cm temos uma área de 158cm2m Levantamento das cargas externas Cargade ocupação15 KN m 2 Cargade revestimentode argamassa18004002108 KN m 2 Cargado EPS80095076 KN m 2 O peso total característica será qk15108076334 KN m 2 a Momento de dimensionamento da armadura Temos que a área de influencia de cada vigota é Ainflubl038502197m 2 A carga distribuída sobre a vigota é QkqkA influ l 334197 52 127 KN m Assim temos que o momento fletor de calculo será Md γdQkl 2 8 1412752 2 8 60KN m6000 KN cm b Calculo da armadura da vigota KMD Md bwd 2fcd 600014 1295 225 031 As Md dfydKZ 600115 955007601191c m 2 Temos que com duas barras de 5mm há uma área de 039cm2 Assim a área complementar é Acomplementar191039152cm 2 Adotando uma barra de 16mm temos uma área de 2011cm2 c Detalhamento Momento torçor Tk300 0 KN m Agora vamos dimensionar a área efetiva A50402000 0c m 2 u2bh250401800cm he A u 2000 180 1111cm A área efetiva será Aebwhehhe Ae4011 115011111123 53c m 2 ue2bwhe hhe ue24011115011 1113556cm Armadura longitudinal de torção Asl Tdsue 2Aefydtgθ Asl1430010013556115 211235350tg45 5828cm 2 Para barras de 125mm de diâmetro temos que o numero de barras é n5828 1227 47548barras

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Review Completa: ELF BAR Disposable Vape Pen - Sabores e Onde Comprar

1

Review Completa: ELF BAR Disposable Vape Pen - Sabores e Onde Comprar

Concreto Armado 2

UEM

Calculo de Laje Nervurada - Quantidade de Aço em Nervuras e Cargas em Pilares

1

Calculo de Laje Nervurada - Quantidade de Aço em Nervuras e Cargas em Pilares

Concreto Armado 2

UEM

4 Ex Concreto 2

2

4 Ex Concreto 2

Concreto Armado 2

UEM

1 Exercício para Estudo

7

1 Exercício para Estudo

Concreto Armado 2

UEM

Listas de Concreto 2

10

Listas de Concreto 2

Concreto Armado 2

UEM

Prova de Concreto II - Lajes Nervuradas

44

Prova de Concreto II - Lajes Nervuradas

Concreto Armado 2

UEM

Concreto 2

6

Concreto 2

Concreto Armado 2

UEM

Texto de pré-visualização

EXERCICIO 1 60 Considere a planta parcial de formas indicandose o pilar P1 e as vigas V1 V2 e V3 Cada uma das vigas solicitam o pilar por uma carga axial de compressão com valores caracteristicos iguais a V1 550 kN V2 300 kN e V3 480 kN O momento fletor de primeira ordem na direção do eixo horizontal do pilar ou em torno do eixo vertical tem valor característico igual a 2500 kNcm e na direção vertical do pilar o momento de primeira ordem tem valor característico igual a 2800 kNcm Comprimento equivalente em ambas as direções igual a 420 cm e fck de 35 MPa Calcular a Valores da esbeltezlimite do pilar b A excentricidade máxima de segunda ordem em ambas as direções do pilar pelo método do pilarpadrão com curvatura aproximada c Valores dos esforços para o dimensionamento do pilar força normal e momentos fletores EXERCICIO 2 20 Para o pilar parede indicado com espessura de 25 cm calcular o valor da carga que o torna deslocável segundo o método simplificado do parâmetro alfa a Considerar edifício com 15 pavimentos sendo o pédireito de 3 m Concreto com resistência característica à compressão de 35 MPa EXERCICIO 3 20 Qual seria o valor de momento fletor de primeira ordem transmitido pelas vigas ao pilar indicado que tem seção de 25x70 cm A distância vertical entre as vigas do pavimento inferior e superior é de 460 cm entre as faces superiores de cada viga A viga contínua V4 tem seção de 12x52 cm e a viga V2 que termina no pilar tem seção de 20x62 cm e carregamento uniforme de 25 kNm valor característico e comprimento teórico igual a 350 m valor a ser usado nos cálculos EXERCÍCIO 1 Considere calcular uma laje nervurada prémoldada unidirecional e nervura de concreto armado para o fechamento do vão da planta de formas indicada A carga de utilização sobre a laje é de 15 kNm² e será revestida com argamassa 18 kNm³ na face superior 4 cm de espessura e na face inferior com uma espessura de 2 cm O material de enchimento deve ser do tipo EPS com espessura h de 95 cm e largura b igual a 32 cm A largura da base de concreto da nervura é igual a 12 cm Considerar concreto C25 aço CA50 vãos teóricos Calcular A O momento fletor de dimensionamento da armadura da nervura em kNm B O valor de armadura de flexão na vigota em cm² C Detalhamento da armadura da laje EXERCÍCIO 2 Para a viga V101 que está engastada no pilar parede da planta indicada calcular a quantidade de barras da armadura longitudinal que são necessárias para resistir ao efeito de torção na seção transversal A viga V101 tem seção de 20 x 55 cm e as vigas V102 e V103 têm seção de 15 x 25 cm Considerar peso próprio do concreto igual a 25 kNm³ e peso próprio da alvenaria igual a 13 kNm³ Sobre as vigas V102 e V103 consta parede de alvenaria com altura de 15 m e sobre a viga V101 a alvenaria tem altura de 280 m O cobrimento do concreto da armadura da V101 é de 30 mm Considerar bitola de 10 mm para a armadura longitudinal de torção e bitola de 63 mm para os estribos Concreto C25 e aço CA50 EXERCÍCIO 1 40 Considere a laje prémoldada com nervura treliçada posicionada na direção do menor vão A carga de utilização sobre a laje é de 15 kNm² e deve ser revestida com argamassa 18 kNm³ na face superior 4 cm de espessura e na face inferior espessura de 2 cm O material de enchimento deve ser do tipo EPS 8 kNm³ com espessura h de 95 cm e largura b igual a 32 cm A largura da base de concreto da nervura é igual a 12 cm A laje deve ter espessura de capa de concreto com valor mínimo recomendado em norma técnica Considerar concreto C25 aço CA50 vãos teóricos para os cálculos Pedese A O momento fletor de dimensionamento da armadura da nervura em kNm B O valor de armadura de flexão complementar na vigota em cm² considerando treliça TB8M com 604250 de diâmetro para a barra superior diagonal e inferior respectivamente C O detalhamento da armadura necessária para a laje EXERCÍCIO 2 35 Para a seção transversal indicada solicitada por um momento de torção de valor característico igual a 300 kNm determinar a quantidade de barras longitudinais necessárias em cada face lateral para resistir com segurança ao efeito da torção Considerar cobrimento de concreto da armadura igual a 40 mm estribo de 10 mm de diâmetro e barras longitudinais de 125 mm de diâmetro O aço é o CA50 e a inclinação da biela comprimida de concreto é aquela do modelo 1 de cálculo da armadura transversal O concreto tem fck de 40 MPa EXERCÍCIO 3 25 Considerar a laje lisa indicada na Figura que segue O cobrimento da armadura da laje é de 30 mm e a carga de compressão do pilar interno e com carregamento simétrico é de 900 kN de valor característico e concreto fck de 25 MPa Verificar o efeito da punção na laje e caso necessário definir o valor mínimo de fck para garantia da segurança em Estado limite último relacionado com a resistência à compressão da diagonal de concreto na superfície crítica C relacionado ao efeito da punção Valores iniciais Nk55030048013300 KN My2500KN cm Mx2800KN cm Temos que as excentricidades de primeira ordem são e1 y Nd Myd 1413300 1 42500 053cm e1 x Nd Mx d1413300 142800 047 cm a Valores de esbeltez limite Direção x λ1 x 2512 5e1x hx αb 2512 5047 40 0 4 6287 Direção y λ1 y 2512 5e1 y h y αb 2512 5053 22 04 6325 b Determinação da excebtricidade de segunda ordem Direção x v Nd Acfcd 1 41330014 442235 077 Curvatura aproximada 1 r 0005 hxv05 0005 440770500000894c m 1 e 2x l 2 10 1 r 420 2 10 00000894158cm Direção y v Nd Acfcd 1 41330014 442235 077 Curvatura aproximada 1 r 0005 h yv05 0005 22077050000178cm 1 e 2 y l 2 10 1 r 420 2 10 0000178316cm c Força normal de calculo NdNkγd13301418620 KN Momento na direção x Md tot xαbγdMxNde 2x Md tot x0414280018620158450996 KN cm Momento na direção y Md tot yαbγdMyNde2 y Md tot x0414250018620316728392KN cm Temos que o momento de inércia do pilar é I pilarhb 3 12 7025 3 12 9114583c m 4 O raio de giração do pilar é r pilarI pilar l 9114583 460 19814 cm 3 Temos que o momento de inercia da viga V2 é I vigabh 3 12 2062 3 12 39721333 cm 4 O raio de giração da viga é r viga I viga l viga 39721333 350 1134 89 cm 3 O momento de engaste perfeito entre viga e pilar é M engql vig a 2 12 2535 2 12 2552KN m25520KN cm Assim o momento característico de primeira ordem é Mk M engr pilar 2r pilarr viga Mk 2552019814 2198141134 8933024 KN cm Levantamento das cargas externas Cargade ocupação15 KN m 2 Cargade revestimentode argamassa18004002108 KN m 2 Cargado EPS80095076 KN m 2 O peso total característica será qk15108076334 KN m 2 a Momento de dimensionamento da armadura Temos que a área de influencia de cada vigota é Ainflubl038502197m 2 A carga distribuída sobre a vigota é QkqkA influ l 334197 52 127 KN m Assim temos que o momento fletor de calculo será Md γdQkl 2 8 1412752 2 8 60 KN m6000KN cm b Calculo da armadura da vigota KMD M d bwd 2fcd 600014 1295 225 031 As Md dfydKZ 600115 955007601191c m 2 Adotando 3 barras de 10mm de diâmetro temos uma área de 236cm2 c Detalhamento Cargas nas vigas V103 e V102 Peso próprio01502525094 KN m Pesoalvenaria1315015292 KN m A carga total será qk094292386 KN m Carga de apoio da viga V103 na viga V101 q31qkl3862772 KN O momento de engaste na viga 101 é M 3 1qkl 2 2 3862 2 2 772KN m Carga de apoio da viga V102 na viga V101 q21qkl386124 63KN O momento de engaste na viga 101 é M 21qkl 2 2 38612 2 2 278KN m Cargas na viga V101 Peso próprio0205525275 KN m Pesoalvenaria1328027 28 KN m A carga total será qk2757 281003 KN m O esquema estático da viga será O diagrama de momento fletor é O diagrama de esforço cortante é O diragama de momento torçor é Assim temos que os valores característicos de calculo são Momento fletor Mk1777 KN m Força cortante Vk624 KN Momento torçor Tk7 7 KN m Agora vamos dimensionar a área efetiva A205511000c m 2 u2bh222551540cm he A u 1100 154 714cm A área efetiva será Aebwhehhe Ae2271455714 7112cm 2 ue2bwhe hhe ue222714 55714 12544 cm Armadura longitudinal de torção Asl Tdsue 2Aefydtgθ Asl147710012544115 2711250tg 45 218c m 2 Para barras de 10mm de diâmetro temos que o numero de barras é n 218 07852773barras Armadura transversal de torção As Tdstgθ 2Aefyd Asl7710014tg 45 2711250 151cm 2m Para barras de 63mm de diâmetro temos que barras a cada 20cm temos uma área de 158cm2m Levantamento das cargas externas Cargade ocupação15 KN m 2 Cargade revestimentode argamassa18004002108 KN m 2 Cargado EPS80095076 KN m 2 O peso total característica será qk15108076334 KN m 2 a Momento de dimensionamento da armadura Temos que a área de influencia de cada vigota é Ainflubl038502197m 2 A carga distribuída sobre a vigota é QkqkA influ l 334197 52 127 KN m Assim temos que o momento fletor de calculo será Md γdQkl 2 8 1412752 2 8 60KN m6000 KN cm b Calculo da armadura da vigota KMD Md bwd 2fcd 600014 1295 225 031 As Md dfydKZ 600115 955007601191c m 2 Temos que com duas barras de 5mm há uma área de 039cm2 Assim a área complementar é Acomplementar191039152cm 2 Adotando uma barra de 16mm temos uma área de 2011cm2 c Detalhamento Momento torçor Tk300 0 KN m Agora vamos dimensionar a área efetiva A50402000 0c m 2 u2bh250401800cm he A u 2000 180 1111cm A área efetiva será Aebwhehhe Ae4011 115011111123 53c m 2 ue2bwhe hhe ue24011115011 1113556cm Armadura longitudinal de torção Asl Tdsue 2Aefydtgθ Asl1430010013556115 211235350tg45 5828cm 2 Para barras de 125mm de diâmetro temos que o numero de barras é n5828 1227 47548barras

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®