·
Engenharia de Produção ·
Pesquisa Operacional 2
· 2023/1
Send your question to AI and receive an answer instantly
Recommended for you
10
Slide - Logística - 2023-2
Pesquisa Operacional 2
UFPR
4
Lista de Exercícios - Problemas de Transporte - Pesquisa Operacional
Pesquisa Operacional 2
UFPR
3
Lista de Exercícios Resolvendo Problemas de Programação Linear Inteira com Branch and Bound
Pesquisa Operacional 2
UFPR
4
Prova Pesquisa Operacional 2-2023 1
Pesquisa Operacional 2
UFPR
8
Lista Formulação-2023 1
Pesquisa Operacional 2
UFPR
17
Exercício de Formulação - 2023-2
Pesquisa Operacional 2
UFPR
4
Exercícios Resolvidos de Pesquisa Operacional - Heurística do Vizinho Mais Próximo e Ford-Fulkerson
Pesquisa Operacional 2
UFPR
3
Lista de Exercicios - Problemas de Designacao
Pesquisa Operacional 2
UFPR
7
Exercícios de Branch e Bound Resolvidos-2023 1
Pesquisa Operacional 2
UFPR
2
P2 - 2024-1
Pesquisa Operacional 2
UFPR
Preview text
Prof. Volmir – UFPR 1 Introdução • Divisibility Assumption of Linear Programming: Decision variables in a linear programming model are allowed to have any values, including fractional values, that satisfy the functional and nonnegativity constraints. • Since the number of “products” must have an integer value, the divisibility assumption is violated. https://people.eng.unimelb.edu.au/pstuckey/COMP90046/lec/s5_mip.pdf Prof. Volmir – UFPR 2 http://personal.lse.ac.uk/WILLIAHP/talks/he_Problem_with_Integer_Programming.ppt http://www.baskent.edu.tr/~sureten/MS(integer programming).ppt Prof. Volmir – UFPR 3 Prof. Volmir – UFPR 4 http://home.ubalt.edu/ntsbarsh/ECON/Integer.ppt Prof. Volmir – UFPR 5 Prof. Volmir – UFPR 6 THE ALABAMA PARADOX https://academic.oup.com/teamat/article-abstract/1/2/69/1685642?redirectedFrom=PDF Prof. Volmir – UFPR 7 Formulações - binário VVaarriiáávveeiiss BBiinnáárriiaass ((SSIIM M--NNÃÃOO,, YYEESS--NNOO,, GGOO--NNOO--GGOO,, 00--11)) https://cs.stanford.edu/~ermon/cs325/slides/MIP2.ppt Prof. Volmir – UFPR 8 Prof. Volmir – UFPR 9 Encargos Fixos e Custos de Instalação http://home.ubalt.edu/ntsbarsh/ECON/Integer.ppt Prof. Volmir – UFPR 10 RReellaaççõõeess llóóggiiccaass –– IIm mpplliiccaaççõõeess SSEE--EENNTTÃÃOO Prof. Volmir – UFPR 11 Prof. Volmir – UFPR 12 AAttiivvaarr oouu DDeessaattiivvaarr UUM MAA rreessttrriiççããoo reformulando Seja 4x+3y 12 e 2x + 5x 10 Desativar/Ativar a restrição 2x + 5x 10. Prof. Volmir – UFPR 13 AAttiivvaarr UUM MAA rreessttrriiççããoo ee ddeessaattiivvaarr OOUUTTRRAA rreessttrriiççããoo https://people.eng.unimelb.edu.au/pstuckey/COMP90046/lec/s5_mip.pdf Prof. Volmir – UFPR 14 Outro exemplo Prof. Volmir – UFPR 15 https://laurentlessard.com/teaching/cs524/slides/20%20- %20logic%20constraints%20and%20integer%20variables.pdf Prof. Volmir – UFPR 16 RReepprreesseennttaaççããoo ddee ffuunnççããoo lliinneeaarr ppoorr ppaarrtteess x=0:0.01:2; >> y=x.^2; >> plot(x,y) Prof. Volmir – UFPR 17 RReepprreesseennttaaççããoo ddee vvaalloorreess ddiissccrreettooss http://www.facom.ufms.br/~ricardo/Courses/OP-2008/Lectures/Lec08.pdf Também pode ser usado quando a variável inteira tem limite superior VVaarriiáávveell aassssuum miinnddoo vvaalloorreess ddeessccoonnttíínnuuooss EElliim miinnaaççããoo ddee pprroodduuttooss ddee vvaarriiáávveeiiss , Linearizando Forma 1 ou Forma 2 , ,
Send your question to AI and receive an answer instantly
Recommended for you
10
Slide - Logística - 2023-2
Pesquisa Operacional 2
UFPR
4
Lista de Exercícios - Problemas de Transporte - Pesquisa Operacional
Pesquisa Operacional 2
UFPR
3
Lista de Exercícios Resolvendo Problemas de Programação Linear Inteira com Branch and Bound
Pesquisa Operacional 2
UFPR
4
Prova Pesquisa Operacional 2-2023 1
Pesquisa Operacional 2
UFPR
8
Lista Formulação-2023 1
Pesquisa Operacional 2
UFPR
17
Exercício de Formulação - 2023-2
Pesquisa Operacional 2
UFPR
4
Exercícios Resolvidos de Pesquisa Operacional - Heurística do Vizinho Mais Próximo e Ford-Fulkerson
Pesquisa Operacional 2
UFPR
3
Lista de Exercicios - Problemas de Designacao
Pesquisa Operacional 2
UFPR
7
Exercícios de Branch e Bound Resolvidos-2023 1
Pesquisa Operacional 2
UFPR
2
P2 - 2024-1
Pesquisa Operacional 2
UFPR
Preview text
Prof. Volmir – UFPR 1 Introdução • Divisibility Assumption of Linear Programming: Decision variables in a linear programming model are allowed to have any values, including fractional values, that satisfy the functional and nonnegativity constraints. • Since the number of “products” must have an integer value, the divisibility assumption is violated. https://people.eng.unimelb.edu.au/pstuckey/COMP90046/lec/s5_mip.pdf Prof. Volmir – UFPR 2 http://personal.lse.ac.uk/WILLIAHP/talks/he_Problem_with_Integer_Programming.ppt http://www.baskent.edu.tr/~sureten/MS(integer programming).ppt Prof. Volmir – UFPR 3 Prof. Volmir – UFPR 4 http://home.ubalt.edu/ntsbarsh/ECON/Integer.ppt Prof. Volmir – UFPR 5 Prof. Volmir – UFPR 6 THE ALABAMA PARADOX https://academic.oup.com/teamat/article-abstract/1/2/69/1685642?redirectedFrom=PDF Prof. Volmir – UFPR 7 Formulações - binário VVaarriiáávveeiiss BBiinnáárriiaass ((SSIIM M--NNÃÃOO,, YYEESS--NNOO,, GGOO--NNOO--GGOO,, 00--11)) https://cs.stanford.edu/~ermon/cs325/slides/MIP2.ppt Prof. Volmir – UFPR 8 Prof. Volmir – UFPR 9 Encargos Fixos e Custos de Instalação http://home.ubalt.edu/ntsbarsh/ECON/Integer.ppt Prof. Volmir – UFPR 10 RReellaaççõõeess llóóggiiccaass –– IIm mpplliiccaaççõõeess SSEE--EENNTTÃÃOO Prof. Volmir – UFPR 11 Prof. Volmir – UFPR 12 AAttiivvaarr oouu DDeessaattiivvaarr UUM MAA rreessttrriiççããoo reformulando Seja 4x+3y 12 e 2x + 5x 10 Desativar/Ativar a restrição 2x + 5x 10. Prof. Volmir – UFPR 13 AAttiivvaarr UUM MAA rreessttrriiççããoo ee ddeessaattiivvaarr OOUUTTRRAA rreessttrriiççããoo https://people.eng.unimelb.edu.au/pstuckey/COMP90046/lec/s5_mip.pdf Prof. Volmir – UFPR 14 Outro exemplo Prof. Volmir – UFPR 15 https://laurentlessard.com/teaching/cs524/slides/20%20- %20logic%20constraints%20and%20integer%20variables.pdf Prof. Volmir – UFPR 16 RReepprreesseennttaaççããoo ddee ffuunnççããoo lliinneeaarr ppoorr ppaarrtteess x=0:0.01:2; >> y=x.^2; >> plot(x,y) Prof. Volmir – UFPR 17 RReepprreesseennttaaççããoo ddee vvaalloorreess ddiissccrreettooss http://www.facom.ufms.br/~ricardo/Courses/OP-2008/Lectures/Lec08.pdf Também pode ser usado quando a variável inteira tem limite superior VVaarriiáávveell aassssuum miinnddoo vvaalloorreess ddeessccoonnttíínnuuooss EElliim miinnaaççããoo ddee pprroodduuttooss ddee vvaarriiáávveeiiss , Linearizando Forma 1 ou Forma 2 , ,