·

Cursos Gerais ·

Física

Send your question to AI and receive an answer instantly

Ask Question

Recommended for you

Preview text

4) (1,5 pontos) A mochila de um astronauta pesa 17,5 N quando ela está na superfície terrestre, mas somente 3,24 N na superfície de um asteroide. (a) Qual é a aceleração da gravidade nesse asteroide? (b) Qual é a massa da mochila no asteroide? P = m.g P_{T} = m . g_{T} g_{AS} = \\frac{P_{AS}}{m} g_{AS} = \\frac{3,24}{1,78} g_{AS} = 4,82 \\frac{m}{s^2} g_{AS} = 1,82 \\frac{m}{s^2} 5) (1,5 pontos) Uma mulher pesando 600 N está em pé sobre uma balança de mola contendo uma mola rígida. No equilíbrio, a mola está comprimida 1,0 cm sob a ação do peso da mulher. Calcule a constante (k) de rigidez da mola. F_{el} = - k . \\Delta x \\ F_{el} = Peso = 600N \\ \\Delta x = 1,0cm k = \\frac{600}{0,01} = 60000 \\ N/m \\ 6) (1,5 pontos) Um bloco de massa M, cujo peso é P = 180 N está pendurado por uma corda a partir de um nó N, o qual está amarrado ao teto através de duas outras cordas conforme a figura. As cordas têm massa desprezível, e o módulo da força gravitacional sobre o bloco é desprezível comparado com a força gravitacional sobre o bloco. Todo o sistema está em equilíbrio. Calcule as tensões sobre as três cordas. 3) (1,5 pontos) Duas forças, \\vec{F_1} = (4N) \\hat{j} + (-2N) \\hat{i} e \\vec{F_2} = (3N) \\hat{j} + (2N) \\hat{i} atuam em um corpo de massa 20 kg. O corpo está inicialmente em repouso e na origem quando t = 0. (a) Calcule o vetor aceleração (a) adquirida pelo corpo e (b) os vetores velocidade (v) e posição (r) no tempo t = 5 s. a) \\vec{F_{res}} = \\sum \\vec{F} = \\vec{F_1} + \\vec{F_2} \\vec{F_{res}} = 4\\hat{j} - 2\\hat{i} + (3\\hat{j} + 2\\hat{i}) \\vec{F_{res}} = 7\\hat{j} \\ vec{F} = m . a \\vec{a} = \\frac{ \\vec{F}}{m} \\ a = \\frac{7}{20} \\ a = 0,35 \\ m/s^2 \\ b) \\ v = v_0 + a . t \\ v = 0 + \\frac{7}{20} . 5 \\ v = \\frac{7}{4} = 1,75 \\hat{i} \\hat{j} \\ r = v_0 . t + \\frac{1}{2} a . t^2 \\ = 0 + \\frac{1}{2} . \\frac{7}{20} . 5^2 \\ = \\frac{35}{20} = \\frac{7}{4} = 4,38 \\hat{j} 7) (1,5 pontos) Um arqueólogo aventureiro passa de um rochedo para outro deslocando-se lentamente com as mãos por meio de uma corda esticada entre os rochedos. Ele para e fica em repouso no meio da corda conforme a figura. Supondo que o ângulo de sua é aproximadamente 10°, determine a tensão na corda presa aos roche dos. A massa do nosso herói é de 80,0 kg\n\n(1)\nI_x = I_2x \nI_1 + I_y = P = m.g\n\nI_1 . cos 10° = I_2 . cos 10° \nI_2 . sen 10° + I_2 . sen 10° = 80 x 9,81 (2)\n\n(2)\n2 I_1 sen 10° = 785 \nI_1 = 785 / 2 sen 10°\nI_1 = 2.260 N \nI_2 = 2.260 N