• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia de Controle e Automação ·

Processamento Digital de Sinais

· 2023/1

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Lista de Exercícios Processamento Digital de Sinais-2023 1

3

Lista de Exercícios Processamento Digital de Sinais-2023 1

Processamento Digital de Sinais

UTFPR

Atividade 4-2023-1

1

Atividade 4-2023-1

Processamento Digital de Sinais

UTFPR

Slide - Aula 1 Introdução - 2024-1

13

Slide - Aula 1 Introdução - 2024-1

Processamento Digital de Sinais

UTFPR

Atividade de Acompanhamento Teste e Comparativo Final dos Filtros Digitais Fir - 2023-1

1

Atividade de Acompanhamento Teste e Comparativo Final dos Filtros Digitais Fir - 2023-1

Processamento Digital de Sinais

UTFPR

Slides Transforamda de Fourrier Discreta Dft fft e Transformada Z-2022 1

115

Slides Transforamda de Fourrier Discreta Dft fft e Transformada Z-2022 1

Processamento Digital de Sinais

UTFPR

Slide - Filtros Fir - 2024-1

15

Slide - Filtros Fir - 2024-1

Processamento Digital de Sinais

UTFPR

Relatorio Simulacao Equalizador LMS - Parametros e Desempenho

7

Relatorio Simulacao Equalizador LMS - Parametros e Desempenho

Processamento Digital de Sinais

IFSUL

Implementação de Convolução em Sistemas de Som com Scilab

1

Implementação de Convolução em Sistemas de Som com Scilab

Processamento Digital de Sinais

UMG

Transformada Z vs Transformada de Fourier: Aplicacoes e Diferencas no PDS

1

Transformada Z vs Transformada de Fourier: Aplicacoes e Diferencas no PDS

Processamento Digital de Sinais

FMU

Listas de Exercicios

10

Listas de Exercicios

Processamento Digital de Sinais

UCS

Texto de pré-visualização

(a) zeros ±j j poles \frac{1}{2} , \infty (b) poles at ±j j zeros at ±1 3.37. From the pole-zero diagram \displaystyle{X(z) = \frac{z}{(z^{2}-z+\frac{1}{2})(z+\frac{3}{4})}} \quad|z|>\frac{3}{4} \displaystyle{y[n] = x[-n+3] = x[-(n-3)]} \Rightarrow\displaystyle{Y(z) = z^{-3}X(z^{-1}) = \frac{z^{-3}z^{-1}}{(z^{-2}-z^{-1}+\frac{1}{2})(z^{-1}+\frac{3}{4})}} \displaystyle{\hspace{6em}= \frac{\frac{8}{3}}{z(2-2z+z^{2})(\frac{4}{3}+z)}} Poles at 0, -\frac{4}{3}, 1 \pm j, zeros at \infty x[n] causal\Rightarrow x[-n+3] is left-sided\Rightarrow ROC is 0 < |z| < 4/3. 3.35. (a) \displaystyle{X(z) = \log_{2}(\frac{1}{2}-z)} \quad \displaystyle{|z| < \frac{1}{2}} \displaystyle{X(z) = \log(1-2z) = -\sum^{\infty}_{i=1} \frac{(2z)^{i}}{i} = -\sum^{\infty}_{t=-\infty} \frac{1}{t} (2z)^{-t} = \sum^{\infty}_{t=-\infty} \frac{1}{t} \left( rac{1}{2}\right)^{t} z^{-t}} Therefore, \displaystyle{x[n] = \frac{1}{n}\left(\frac{1}{2}\right)^{n}u[-n-1]} (b) \displaystyle{nz[n]} \displaystyle{-(1-2z)}nz[n] \displaystyle{= \frac{1}{n}\left(\frac{1}{2}\right)^{n}u[-n-1]} \displaystyle{z[n] = \frac{1}{n}\left(\frac{1}{2}\right)^{n}u[-n-1]} 3.23. (a) y[n] = 0\ \ n < 0 y[n] = \sum_{k=0}^{n}x[k]h[n-k] = \sum_{k=0}^{n}a^{n-k} = a^{n}\frac{1-a^{-(n+1)}}{1-a^{-1}} = \frac{1-a^{n+1}}{1-a}\ \ 0 \leq n < N-1 y[n] = \sum_{k=0}^{N-1}x[k]h[n-k] = \sum_{k=0}^{N-1}a^{n-k} = a^{n}\frac{1-a^{-N}}{1-a^{-1}} = a^{n+1}\frac{1-a^{-N}}{a^{-1}} ,\ \ n \geq N (b) H(z) = \sum_{n=0}^{\infty} a^{n}z^{-n} = \frac{1}{1-az^{-1}} \quad |z| > |a| X(z) = \sum_{n=0}^{N-1} z^{-n} = \frac{1-z^{-N}}{1-z^{-1}} \quad |z|>0 Therefore, Y(z) = \frac{1-z^{-N}}{(1-az^{-1})(1-z^{-1})} = \frac{1}{(1-az^{-1})(1-z^{-1})} - \frac{z^{-N}}{(1-az^{-1})(1-z^{-1})} \quad |z| > |a| Now, \frac{1}{(1-az^{-1})(1-z^{-1})} = \frac{1}{1-az^{-1}}\cdot\frac{1}{1-z^{-1}} = \frac{1}{(1-a)}\left(\frac{1}{1-z^{-1}} - \frac{a}{1-az^{-1}}\right) So y[n] = \left(\frac{1}{1-a}\right)[u[n] - a^{n+1}u[n] - u[n-M] - a^{n-N+1}u[n-N]] = \frac{1-a^{n+1}}{1-a}u[n] - \frac{1-a^{n-N+1}}{1-a}u[n-N] = \begin{cases} 0, & n < 0 \\ \frac{1-a^{n+1}}{1-a},& 0 \leq n \leq N-1 \\ a^{n+1}\left(\frac{1-a^{-N}}{a^{-1}}\right),& n \geq N \end{cases} 3.16. (a) To determine H(z), we first find X(z) and Y(z): X(z) = \frac{1}{1-z^{-1}}.\frac{1}{1-2z^{-1}}=\frac{1}{(1-z^{-1})(1-2z^{-1})} = \frac{a^{-1}}{(1-\frac{1}{3}z^{-1})(1-2z^{-1})} \quad\frac{1}{3} < |z| < 2 Y(z) = \frac{5}{1-\frac{1}{5}z^{-1}}=\frac{5}{\frac{1}{(1-\frac{1}{5}z^{-1})}} =(1-\frac{1}{3}z^{-1})^{-1}/(1-\frac{1}{5}z^{-1})^{-1} \quad |z|> \frac{2}{3} Now, H(z) = \frac{Y(z)}{X(z)}=\frac{1-2z^{-1}}{1-\frac{1}{3}z^{-1}} \quad |z| > \frac{2}{3} The pole-zero plot of H(z) is plotted below. (b) Taking the inverse z-transform of H(z), we get h[n] = \left(\frac{2}{3}\right)^nu[n]-2\left(\frac{1}{3}\right)^nu[n-1] = \left(\frac{2}{3}\right)\left(u[n] - 3u[n-1]\right) (c) Since H(z) = \frac{Y(z)}{X(z)} = \frac{1 -2z^{-1}}{1-\frac{1}{3}z^{-1}} we can write Y(z)(1-\frac{1}{3}z^{-1}) = X(z)(1-2z^{-1}), whose inverse z-transform leads to y[n] = -\frac{1}{3}y[n-1] = x[n] - 2x[n-1] (d) The system is stable because the ROC includes the unit circle. It is also causal since the impulse response h[n] = 0 for n < 0. 3.9. H(z) = \frac{1+x^{-1}}{(1-\frac{1}{2}z^{-1})(1+\frac{1}{2}z^{-1})} = \frac{2}{(1-\frac{1}{2}z^{-1})} - \frac{1}{(1+\frac{1}{2}z^{-1})} (a) h[n] causal \Rightarrow ROC outside |z| = \frac{1}{2} \Rightarrow |z| > \frac{1}{2}. (b) ROC includes |z| = 1 \Rightarrow stable. (c) y[n] = \frac{1}{3}\left(-\frac{1}{4}\right)^n u[n] - \frac{3}{4}(2)^nu[-n-1] Y(z) = \frac{-\frac{3}{4}z^{-1} + \frac{3}{4}}{1+x^{-1} + 2z^{-1}} = \frac{1}{1+\frac{1}{2}z^{-1}(1-2z^{-1})} \quad \frac{1}{4}|z| < 2 X(z) = \frac{Y(z)}{H(z)} = \left(\frac{1-\frac{1}{2}z^{-1}}{1-2z^{-1}} \right) & |z| < 2 x[n] = -(2)^n u[-n-1]+\frac{1}{2}(2)^n u[-n] (d) h[n] = 2\left(\frac{1}{2}\right)^n u[n] - \left(-\frac{1}{4}\right)^n u[n] (c) X(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} \quad |z| > \frac{1}{2} Partial Fractions: X(z) = \frac{-3}{1 + \frac{1}{4}z^{-1}} + \frac{4}{1 + \frac{1}{2}z^{-1}} \quad |z| > \frac{1}{2} x[n] = \left[-3 \left( -\frac{1}{4} \right)^n + 4 \left( -\frac{1}{2} \right)^n \right] u[n] Long division: \frac{1}{1 + \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} 1 + \left(-\frac{3}{4}\right)z^{-1} + \left(\frac{-3}{16} + 1\right)z^{-2} + \ldots \overline{\smash[b]{\phantom{1}\frac{1}{1}\right) \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}}} \\ \left(-\frac{3}{4}\right)z^{-1} \quad + \quad \phantom{-}\frac{3}{4}(\frac{3}{4})z^{-2} \quad + \phantom{-}\frac{3}{4}(\frac{-3}{4})z^{-3} \underbar{[}{-\frac{3}{8} + \frac{3}{4}(\frac{3}{4})]z^{-2} - \frac{3}{8}(\frac{3}{4})z^{-3}} \Rightarrow x[n] = \left[-3 \left( -\frac{1}{4} \right)^n + \left( -\frac{1}{2} \right)^{n-2} \right] u[n] (d) X(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{1}{2}z^{-2}} \quad |z| > \frac{1}{2} Partial Fractions: X(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{1}{2}z^{-1}} \quad |z| > \frac{1}{2} x[n] = \left( -\frac{1}{2} \right)^n u[n] Long division: see part (i) above. (e) X(z) = \frac{1 - az^{-1}}{z^{-1} - a} \quad |z| > |a^{-1}| Partial Fractions: X(z) = -a \cdot \frac{a^{-1}(1-a^2)}{1-a^{-1}z^{-1}} \quad |z| > |a^{-1}| x[n] = -a\delta[n] - (1-a^2)a^{-(n+1)}u[n] Long division: \underline{\phantom{-a + z^{-1}}}\right] + \dots x[n] = -a\delta[n] - (1-a^2)a^{-(n+1)}u[n] 3.5. X(z) = (1 + 2z)(1 + 3z^{-1})(1 - z^{-1}) = 2z + 5 - 4z^{-1} - 3z^{-2} = \sum_{n=-\infty}^{\infty} x[n]z^{-n} Therefore, x[n] = 2\delta[n + 1] + 5\delta[n] - 4\delta[n - 1] - 3\delta[n - 2] 3.4. The pole-zero plot of X(z) appears below. (a) For the Fourier transform of x[n] to exist, the z-transform of x[n] must have an ROC which includes the unit circle, therefore, \frac{1}{3} < |z| < |2|. Since this ROC lies outside \frac{1}{3}, this pole contributes a right-sided sequence. Since the ROC lies inside 2 and 3, these poles contribute left-sided sequences. The overall x[n] is therefore two-sided. (b) Two-sided sequences have ROC's which look like washers. There are two possibilities. The ROC's corresponding to these are: \frac{1}{3} < |z| < |2| and |2| < |z| < |3|. (c) The ROC must be a connected region. For stability, the ROC must contain the unit circle. For causality the ROC must be outside the outermost pole. These conditions cannot be met by any of the possible ROC's of this pole-zero plot. 3.2. { n , 0 ≤ n ≤ N - 1 x[n] = N , N ≤ n = n u[n] - (n - N)u[n - N] d d 1 n x[n] ⇔ -z⁻¹—— X(z) ⇒ n u[n] ⇔ -z⁻¹—— ———— |z| > 1 dz dz (1 - z⁻¹)² z⁻¹ n u[n] ⇔ ——— |z| > 1 (1 - z⁻¹)² X(z)· z⁻ⁿ⁰ ⇒ (n - N)u[n - N] ⇔ z⁻ⁿ⁻¹ x[n - n₀] ⇔ ————————— |z| > 1 (1 - z⁻¹)² therefore z⁻¹ - z⁻ⁿ⁻¹ z⁻¹(1 - z⁻ⁿ) X(z) = ————————— = (1 - z⁻¹)² (1 - z⁻¹)²

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Lista de Exercícios Processamento Digital de Sinais-2023 1

3

Lista de Exercícios Processamento Digital de Sinais-2023 1

Processamento Digital de Sinais

UTFPR

Atividade 4-2023-1

1

Atividade 4-2023-1

Processamento Digital de Sinais

UTFPR

Slide - Aula 1 Introdução - 2024-1

13

Slide - Aula 1 Introdução - 2024-1

Processamento Digital de Sinais

UTFPR

Atividade de Acompanhamento Teste e Comparativo Final dos Filtros Digitais Fir - 2023-1

1

Atividade de Acompanhamento Teste e Comparativo Final dos Filtros Digitais Fir - 2023-1

Processamento Digital de Sinais

UTFPR

Slides Transforamda de Fourrier Discreta Dft fft e Transformada Z-2022 1

115

Slides Transforamda de Fourrier Discreta Dft fft e Transformada Z-2022 1

Processamento Digital de Sinais

UTFPR

Slide - Filtros Fir - 2024-1

15

Slide - Filtros Fir - 2024-1

Processamento Digital de Sinais

UTFPR

Relatorio Simulacao Equalizador LMS - Parametros e Desempenho

7

Relatorio Simulacao Equalizador LMS - Parametros e Desempenho

Processamento Digital de Sinais

IFSUL

Implementação de Convolução em Sistemas de Som com Scilab

1

Implementação de Convolução em Sistemas de Som com Scilab

Processamento Digital de Sinais

UMG

Transformada Z vs Transformada de Fourier: Aplicacoes e Diferencas no PDS

1

Transformada Z vs Transformada de Fourier: Aplicacoes e Diferencas no PDS

Processamento Digital de Sinais

FMU

Listas de Exercicios

10

Listas de Exercicios

Processamento Digital de Sinais

UCS

Texto de pré-visualização

(a) zeros ±j j poles \frac{1}{2} , \infty (b) poles at ±j j zeros at ±1 3.37. From the pole-zero diagram \displaystyle{X(z) = \frac{z}{(z^{2}-z+\frac{1}{2})(z+\frac{3}{4})}} \quad|z|>\frac{3}{4} \displaystyle{y[n] = x[-n+3] = x[-(n-3)]} \Rightarrow\displaystyle{Y(z) = z^{-3}X(z^{-1}) = \frac{z^{-3}z^{-1}}{(z^{-2}-z^{-1}+\frac{1}{2})(z^{-1}+\frac{3}{4})}} \displaystyle{\hspace{6em}= \frac{\frac{8}{3}}{z(2-2z+z^{2})(\frac{4}{3}+z)}} Poles at 0, -\frac{4}{3}, 1 \pm j, zeros at \infty x[n] causal\Rightarrow x[-n+3] is left-sided\Rightarrow ROC is 0 < |z| < 4/3. 3.35. (a) \displaystyle{X(z) = \log_{2}(\frac{1}{2}-z)} \quad \displaystyle{|z| < \frac{1}{2}} \displaystyle{X(z) = \log(1-2z) = -\sum^{\infty}_{i=1} \frac{(2z)^{i}}{i} = -\sum^{\infty}_{t=-\infty} \frac{1}{t} (2z)^{-t} = \sum^{\infty}_{t=-\infty} \frac{1}{t} \left( rac{1}{2}\right)^{t} z^{-t}} Therefore, \displaystyle{x[n] = \frac{1}{n}\left(\frac{1}{2}\right)^{n}u[-n-1]} (b) \displaystyle{nz[n]} \displaystyle{-(1-2z)}nz[n] \displaystyle{= \frac{1}{n}\left(\frac{1}{2}\right)^{n}u[-n-1]} \displaystyle{z[n] = \frac{1}{n}\left(\frac{1}{2}\right)^{n}u[-n-1]} 3.23. (a) y[n] = 0\ \ n < 0 y[n] = \sum_{k=0}^{n}x[k]h[n-k] = \sum_{k=0}^{n}a^{n-k} = a^{n}\frac{1-a^{-(n+1)}}{1-a^{-1}} = \frac{1-a^{n+1}}{1-a}\ \ 0 \leq n < N-1 y[n] = \sum_{k=0}^{N-1}x[k]h[n-k] = \sum_{k=0}^{N-1}a^{n-k} = a^{n}\frac{1-a^{-N}}{1-a^{-1}} = a^{n+1}\frac{1-a^{-N}}{a^{-1}} ,\ \ n \geq N (b) H(z) = \sum_{n=0}^{\infty} a^{n}z^{-n} = \frac{1}{1-az^{-1}} \quad |z| > |a| X(z) = \sum_{n=0}^{N-1} z^{-n} = \frac{1-z^{-N}}{1-z^{-1}} \quad |z|>0 Therefore, Y(z) = \frac{1-z^{-N}}{(1-az^{-1})(1-z^{-1})} = \frac{1}{(1-az^{-1})(1-z^{-1})} - \frac{z^{-N}}{(1-az^{-1})(1-z^{-1})} \quad |z| > |a| Now, \frac{1}{(1-az^{-1})(1-z^{-1})} = \frac{1}{1-az^{-1}}\cdot\frac{1}{1-z^{-1}} = \frac{1}{(1-a)}\left(\frac{1}{1-z^{-1}} - \frac{a}{1-az^{-1}}\right) So y[n] = \left(\frac{1}{1-a}\right)[u[n] - a^{n+1}u[n] - u[n-M] - a^{n-N+1}u[n-N]] = \frac{1-a^{n+1}}{1-a}u[n] - \frac{1-a^{n-N+1}}{1-a}u[n-N] = \begin{cases} 0, & n < 0 \\ \frac{1-a^{n+1}}{1-a},& 0 \leq n \leq N-1 \\ a^{n+1}\left(\frac{1-a^{-N}}{a^{-1}}\right),& n \geq N \end{cases} 3.16. (a) To determine H(z), we first find X(z) and Y(z): X(z) = \frac{1}{1-z^{-1}}.\frac{1}{1-2z^{-1}}=\frac{1}{(1-z^{-1})(1-2z^{-1})} = \frac{a^{-1}}{(1-\frac{1}{3}z^{-1})(1-2z^{-1})} \quad\frac{1}{3} < |z| < 2 Y(z) = \frac{5}{1-\frac{1}{5}z^{-1}}=\frac{5}{\frac{1}{(1-\frac{1}{5}z^{-1})}} =(1-\frac{1}{3}z^{-1})^{-1}/(1-\frac{1}{5}z^{-1})^{-1} \quad |z|> \frac{2}{3} Now, H(z) = \frac{Y(z)}{X(z)}=\frac{1-2z^{-1}}{1-\frac{1}{3}z^{-1}} \quad |z| > \frac{2}{3} The pole-zero plot of H(z) is plotted below. (b) Taking the inverse z-transform of H(z), we get h[n] = \left(\frac{2}{3}\right)^nu[n]-2\left(\frac{1}{3}\right)^nu[n-1] = \left(\frac{2}{3}\right)\left(u[n] - 3u[n-1]\right) (c) Since H(z) = \frac{Y(z)}{X(z)} = \frac{1 -2z^{-1}}{1-\frac{1}{3}z^{-1}} we can write Y(z)(1-\frac{1}{3}z^{-1}) = X(z)(1-2z^{-1}), whose inverse z-transform leads to y[n] = -\frac{1}{3}y[n-1] = x[n] - 2x[n-1] (d) The system is stable because the ROC includes the unit circle. It is also causal since the impulse response h[n] = 0 for n < 0. 3.9. H(z) = \frac{1+x^{-1}}{(1-\frac{1}{2}z^{-1})(1+\frac{1}{2}z^{-1})} = \frac{2}{(1-\frac{1}{2}z^{-1})} - \frac{1}{(1+\frac{1}{2}z^{-1})} (a) h[n] causal \Rightarrow ROC outside |z| = \frac{1}{2} \Rightarrow |z| > \frac{1}{2}. (b) ROC includes |z| = 1 \Rightarrow stable. (c) y[n] = \frac{1}{3}\left(-\frac{1}{4}\right)^n u[n] - \frac{3}{4}(2)^nu[-n-1] Y(z) = \frac{-\frac{3}{4}z^{-1} + \frac{3}{4}}{1+x^{-1} + 2z^{-1}} = \frac{1}{1+\frac{1}{2}z^{-1}(1-2z^{-1})} \quad \frac{1}{4}|z| < 2 X(z) = \frac{Y(z)}{H(z)} = \left(\frac{1-\frac{1}{2}z^{-1}}{1-2z^{-1}} \right) & |z| < 2 x[n] = -(2)^n u[-n-1]+\frac{1}{2}(2)^n u[-n] (d) h[n] = 2\left(\frac{1}{2}\right)^n u[n] - \left(-\frac{1}{4}\right)^n u[n] (c) X(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} \quad |z| > \frac{1}{2} Partial Fractions: X(z) = \frac{-3}{1 + \frac{1}{4}z^{-1}} + \frac{4}{1 + \frac{1}{2}z^{-1}} \quad |z| > \frac{1}{2} x[n] = \left[-3 \left( -\frac{1}{4} \right)^n + 4 \left( -\frac{1}{2} \right)^n \right] u[n] Long division: \frac{1}{1 + \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} 1 + \left(-\frac{3}{4}\right)z^{-1} + \left(\frac{-3}{16} + 1\right)z^{-2} + \ldots \overline{\smash[b]{\phantom{1}\frac{1}{1}\right) \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}}} \\ \left(-\frac{3}{4}\right)z^{-1} \quad + \quad \phantom{-}\frac{3}{4}(\frac{3}{4})z^{-2} \quad + \phantom{-}\frac{3}{4}(\frac{-3}{4})z^{-3} \underbar{[}{-\frac{3}{8} + \frac{3}{4}(\frac{3}{4})]z^{-2} - \frac{3}{8}(\frac{3}{4})z^{-3}} \Rightarrow x[n] = \left[-3 \left( -\frac{1}{4} \right)^n + \left( -\frac{1}{2} \right)^{n-2} \right] u[n] (d) X(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{1}{2}z^{-2}} \quad |z| > \frac{1}{2} Partial Fractions: X(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{1}{2}z^{-1}} \quad |z| > \frac{1}{2} x[n] = \left( -\frac{1}{2} \right)^n u[n] Long division: see part (i) above. (e) X(z) = \frac{1 - az^{-1}}{z^{-1} - a} \quad |z| > |a^{-1}| Partial Fractions: X(z) = -a \cdot \frac{a^{-1}(1-a^2)}{1-a^{-1}z^{-1}} \quad |z| > |a^{-1}| x[n] = -a\delta[n] - (1-a^2)a^{-(n+1)}u[n] Long division: \underline{\phantom{-a + z^{-1}}}\right] + \dots x[n] = -a\delta[n] - (1-a^2)a^{-(n+1)}u[n] 3.5. X(z) = (1 + 2z)(1 + 3z^{-1})(1 - z^{-1}) = 2z + 5 - 4z^{-1} - 3z^{-2} = \sum_{n=-\infty}^{\infty} x[n]z^{-n} Therefore, x[n] = 2\delta[n + 1] + 5\delta[n] - 4\delta[n - 1] - 3\delta[n - 2] 3.4. The pole-zero plot of X(z) appears below. (a) For the Fourier transform of x[n] to exist, the z-transform of x[n] must have an ROC which includes the unit circle, therefore, \frac{1}{3} < |z| < |2|. Since this ROC lies outside \frac{1}{3}, this pole contributes a right-sided sequence. Since the ROC lies inside 2 and 3, these poles contribute left-sided sequences. The overall x[n] is therefore two-sided. (b) Two-sided sequences have ROC's which look like washers. There are two possibilities. The ROC's corresponding to these are: \frac{1}{3} < |z| < |2| and |2| < |z| < |3|. (c) The ROC must be a connected region. For stability, the ROC must contain the unit circle. For causality the ROC must be outside the outermost pole. These conditions cannot be met by any of the possible ROC's of this pole-zero plot. 3.2. { n , 0 ≤ n ≤ N - 1 x[n] = N , N ≤ n = n u[n] - (n - N)u[n - N] d d 1 n x[n] ⇔ -z⁻¹—— X(z) ⇒ n u[n] ⇔ -z⁻¹—— ———— |z| > 1 dz dz (1 - z⁻¹)² z⁻¹ n u[n] ⇔ ——— |z| > 1 (1 - z⁻¹)² X(z)· z⁻ⁿ⁰ ⇒ (n - N)u[n - N] ⇔ z⁻ⁿ⁻¹ x[n - n₀] ⇔ ————————— |z| > 1 (1 - z⁻¹)² therefore z⁻¹ - z⁻ⁿ⁻¹ z⁻¹(1 - z⁻ⁿ) X(z) = ————————— = (1 - z⁻¹)² (1 - z⁻¹)²

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®