·
Oceanografia ·
Física 2
Envie sua pergunta para a IA e receba a resposta na hora
Recomendado para você
Texto de pré-visualização
1 Física II para o Instituto Oceanográfico 1º semestre de 2022 Lista Especial III – Termodinâmica parte II 1. Uma usina OTEC (Ocean Thermal Energy Conversion) é uma instalação para produzir energia útil a partir de diferenças de temperatura entre águas superficiais e águas profundas no mar. a) Calcular a eficiência máxima teórica da OTEC para água superficial a 24 0C e água profunda a 6 0C. b) Quais seriam as vantagens de uma usina OTEC sendo tão baixa a eficiência? 2. Um refrigerador ideal é equivalente a uma máquina de Carnot funcionando no sentido inverso. Isto é, o calor Qf é absorvido de um reservatório frio e o calor Qq é rejeitado para um reservatório quente. a) Faça o diagrama do ciclo no plano pV, supondo que a substancia de trabalho é um gás ideal. b) Demonstre que o trabalho que deve ser fornecido para fazer funcionar o refrigerador é f f f q Q T T T W c) Mostre que o coeficiente de desempenho do refrigerador ideal é: f q f R T T T CD 3. Um motor funciona em condições de eficiência máxima entre dois reservatórios finitos e iguais A e B, de capacidades térmicas C (C = mc, sendo m a massa do reservatório e c seu calor específico) cujas temperaturas iniciais são TAi e Bi T , respectivamente. Conforme o motor funciona, as temperaturas dos reservatórios vão mudando até chegar ao equilíbrio térmico. a) Demonstre que a temperatura de equilíbrio é Bi Ai eq T T T . b) Mostre que o trabalho total realizado pelo motor é ) 2 ( eq Bi Ai T T C T W Questão 1. Usina OTEC a) Eficiência máxima teórica é a eficiência de Carnot: ε_Carnot = 1 - T_F / T_q = (T_q - T_F) / T_q onde T_q = 24°C = 297,15 T_F = 6°C = 279,15 ε_Carnot = 0,06 => 6%. b) Os recursos para esse tipo de usina são amplos, A água por exemplo é naturalmente renovável e não é poluente. Não são gerados subprodutos tóxicos como em outros tipos de usinas. Questão 2 - Refrigerador ideal a) Diagrama pV b) |Q_q| = |Q_f| + |W| Para o refrigerador ideal Para o ciclo Carnot reverso, o trabalho é: |W| = |Q_q| - |Q_f|. Como |Q_F| = |T_F| / |T_q| => |Q_q| = |Q_f| T_q / T_F Então, w = T_q / T_F (Q_f - Q_f) = (T_q / T_F - 1) T_F. Finalmente, W = (T_q - T_F) / T_F Q_f. c) O coeficiente de desempenho de um refrigerador é: CD_R = |Q_f| / |W| Para um refrigerador ideal, W = (T_q - T_F) / T_F Q_f. Então, o coeficiente de desempenho de um refrigerador ideal é CD_R = Q_f / ((T_q - T_F) / T_F Q_f) CD_R = T_F / (T_q - T_F). Questão 3 a) temperatura de equilíbrio Teorema de Clausius ∫(de Tai a Teq) C dT / T + ∫(de Tbi a Teq) C dT / T = 0 => C ln (Teq / Tai) + C ln (Teq / Tbi) = 0 Teq^2 = Tai Tbi Teq = sqrt(Tai Tbi) b) Trabalho total realizado pelo motor ΔU = - W ΔUa = -C (Tai - Teq) {energia disponibilizada pelos} ΔUb = -C (Tbi - Teq) {reservatórios A e B} W = C (Tai - Teq + Tbi - Teq) W = C (Tai + Tbi - 2 Teq)
Envie sua pergunta para a IA e receba a resposta na hora
Recomendado para você
Texto de pré-visualização
1 Física II para o Instituto Oceanográfico 1º semestre de 2022 Lista Especial III – Termodinâmica parte II 1. Uma usina OTEC (Ocean Thermal Energy Conversion) é uma instalação para produzir energia útil a partir de diferenças de temperatura entre águas superficiais e águas profundas no mar. a) Calcular a eficiência máxima teórica da OTEC para água superficial a 24 0C e água profunda a 6 0C. b) Quais seriam as vantagens de uma usina OTEC sendo tão baixa a eficiência? 2. Um refrigerador ideal é equivalente a uma máquina de Carnot funcionando no sentido inverso. Isto é, o calor Qf é absorvido de um reservatório frio e o calor Qq é rejeitado para um reservatório quente. a) Faça o diagrama do ciclo no plano pV, supondo que a substancia de trabalho é um gás ideal. b) Demonstre que o trabalho que deve ser fornecido para fazer funcionar o refrigerador é f f f q Q T T T W c) Mostre que o coeficiente de desempenho do refrigerador ideal é: f q f R T T T CD 3. Um motor funciona em condições de eficiência máxima entre dois reservatórios finitos e iguais A e B, de capacidades térmicas C (C = mc, sendo m a massa do reservatório e c seu calor específico) cujas temperaturas iniciais são TAi e Bi T , respectivamente. Conforme o motor funciona, as temperaturas dos reservatórios vão mudando até chegar ao equilíbrio térmico. a) Demonstre que a temperatura de equilíbrio é Bi Ai eq T T T . b) Mostre que o trabalho total realizado pelo motor é ) 2 ( eq Bi Ai T T C T W Questão 1. Usina OTEC a) Eficiência máxima teórica é a eficiência de Carnot: ε_Carnot = 1 - T_F / T_q = (T_q - T_F) / T_q onde T_q = 24°C = 297,15 T_F = 6°C = 279,15 ε_Carnot = 0,06 => 6%. b) Os recursos para esse tipo de usina são amplos, A água por exemplo é naturalmente renovável e não é poluente. Não são gerados subprodutos tóxicos como em outros tipos de usinas. Questão 2 - Refrigerador ideal a) Diagrama pV b) |Q_q| = |Q_f| + |W| Para o refrigerador ideal Para o ciclo Carnot reverso, o trabalho é: |W| = |Q_q| - |Q_f|. Como |Q_F| = |T_F| / |T_q| => |Q_q| = |Q_f| T_q / T_F Então, w = T_q / T_F (Q_f - Q_f) = (T_q / T_F - 1) T_F. Finalmente, W = (T_q - T_F) / T_F Q_f. c) O coeficiente de desempenho de um refrigerador é: CD_R = |Q_f| / |W| Para um refrigerador ideal, W = (T_q - T_F) / T_F Q_f. Então, o coeficiente de desempenho de um refrigerador ideal é CD_R = Q_f / ((T_q - T_F) / T_F Q_f) CD_R = T_F / (T_q - T_F). Questão 3 a) temperatura de equilíbrio Teorema de Clausius ∫(de Tai a Teq) C dT / T + ∫(de Tbi a Teq) C dT / T = 0 => C ln (Teq / Tai) + C ln (Teq / Tbi) = 0 Teq^2 = Tai Tbi Teq = sqrt(Tai Tbi) b) Trabalho total realizado pelo motor ΔU = - W ΔUa = -C (Tai - Teq) {energia disponibilizada pelos} ΔUb = -C (Tbi - Teq) {reservatórios A e B} W = C (Tai - Teq + Tbi - Teq) W = C (Tai + Tbi - 2 Teq)