·

Química ·

Química Inorgânica 3

Send your question to AI and receive an answer instantly

Ask Question

Preview text

UNIVERSIDADE FEDERAL DE UBERLÂNDIA Elucidação Estrutural de Compostos Orgânicos PG IQUFU 202401 Nome Data Cálculo do deslocamento químico δ para os hidrogênios vinílicos δH 528 Zgem Zcis Ztrans Substituinte R gem Z ppm cis trans H 000 000 000 Alquila 044 026 036 Alquilaanel CH2 071 033 030 CH3 057 002 007 CH2Cl CH2Br 069 015 015 CH2R 072 012 007 CHNR2 056 005 023 CHOR 050 003 007 CNR 023 012 011 CN 098 004 001 C conjugado 126 008 021 C conjugado 110 009 058 COOH conjugado 113 081 038 COOH conjugado 106 095 080 COOR 069 074 021 084 039 056 Alquilaanel significa que a ligação é parte do anel R O fator Z para o substituinte conjugado é usado quando o substituinte ou a ligação dupla está conjugado com outros grupos Adaptado de SILVERSTEIN 2000 CONSTANTINO 2008 Universidade Federal de Uberlândia Instituto de Química Bloco D Prof Marcos Prátto Substituinte R gem Z ppm trans COOR conjugado 068 033 CHO 103 017 Cl 103 019 Br 100 003 I 104 055 CN 098 114 CON 114 040 OR R alifático 137 081 OR conjugado 118 088 COOR conjugado 110 035 Aromático 104 039 NR2 R alifático 135 129 NR2 R conjugado 060 011 SR 099 081 SO2 100 004 158 024 115 095 1 Calcular os deslocamentos químicos dos hidrogênios do alceno C6H5 OC2H5 CC Ha Hb 2 Calcular os deslocamentos químicos dos hidrogênios dos alcenos Ha Ha Ha HO CH3 CC CC H3CO H Ha 3 Calcular o deslocamento químico para os hidrogênios assinalados das seguintes estruturas H H H CH3 H CC H CO2H H3C H CC H CO2H UNIVERSIDADE FEDERAL DE UBERLÂNDIA Elucidação Estrutural de Compostos Orgânicos PG IQUFU 202401 Nome Data Cálculo do deslocamento químico δ para os hidrogênios aromáticos δArH 727 ΣZ Grupo Z ppm orto meta para Cl 010 000 000 Br 010 000 000 NO2 085 010 055 NH2 055 015 055 OH 045 010 040 OR 045 010 040 OCOR 020 010 020 Grupo Z ppm orto meta para CH3 015 010 010 CH2R 010 010 010 CHR2 000 000 000 CHCHR 010 000 010 CHO 065 025 010 COR 070 025 010 COOH 080 025 020 Adaptado de CONSTANTINO 2008 1 Você acha que seria possível decidir utilizando apenas os deslocamentos químicos se a redução do nitrobenzeno a anilina ocorreu ou não conforme em uma preparação de laboratório Quais seriam os valores dos deslocamentos químicos dos hidrogênios dos dois compostos 2 A nitração de compostos aromáticos substituídos produz normalmente misturas de isômeros Faça um estudo dos deslocamentos químicos dos três isômeros mononitrados do tolueno com vistas à possibilidade de determinar a estrutura de cada isômero por RMN de 1H 3 Calcular os δ aromáticos dos hidrogênios nos compostos abaixo 135trinitrobenzeno 24dinitrofenol 2hidróxi4isopropilbenzaldeído 135trinitrobenzeno 1hidróxi3metil2678tetrametóxiantraquinona Problem 1 IR Spectrum liquid film Mass Spectrum UV Spectrum 333 mg10 ml 10 cm cell solvent ethanol 13 C NMR Spectrum 500 MHz CDCl3 solution proton coupled proton decoupled 1 H NMR Spectrum 200 MHz CDCl3 solution TMS Problem 2 IR Spectrum liquid film Mass Spectrum No significant UV absorption above 220 nm 13 C NMR Spectrum 500 MHz CDCl3 solution DEPT CH2CH3CH4 proton decoupled 1 H NMR Spectrum 200 MHz CDCl3 solution exchanges with D2O TMS Problem 3 IR Spectrum liquid film 2984 1741 1243 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum 43 29 M 88 C4H8O2 40 80 120 160 200 240 280 me UV spectrum solvent ethanol 154 mg10 mls path length 100 cm 200 250 300 350 λ nm 13C NMR Spectrum 500 MHz CDCl3 solution DEPT CH2 CH3 CH proton decoupled solvent 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 200 MHz CDCl3 solution TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 7 Problem 4 IR Spectrum CCl4 solution 1744 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum 29 57 M 88 C4H8O2 100 80 60 40 20 of base peak 40 80 120 160 200 240 280 me No significant UV absorption above 220 nm 13C NMR Spectrum 1000 MHz CDCl3 solution DEPT CH2 CH3 CH proton decoupled solvent 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 200 MHz CDCl3 solution expansion ppm TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 8 Problem 6 IR Spectrum liquid film 1716 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum 43 M 86 C4H6O2 100 80 60 40 of base peak 40 80 120 160 200 240 280 m e UV Spectrum λmax 289 nm log10ε 14 solvent methanol 13C NMR Spectrum 100 MHz CDCl3 solution DEPT CH2 CH3 CH proton decoupled solvent 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 200 MHz CDCl3 solution TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm Problem 21 IR Spectrum KBr disc 1600 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum M103 C4H9NO2 30 100 80 60 40 20 0 40 80 120 160 200 240 280 m e 13C NMR Spectrum 1000 MHz D2O solution DEPT CH2 CH3 CH proton decoupled 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 400 MHz D2O solution Note there are 3 protons which exchange with the D2O solvent expansions 32 30 ppm 22 20 ppm H2O and HOD in solvent 10 9 8 7 6 5 4 3 2 1 0 δ ppm No significant UV absorption above 220 nm 111 Problem 22 IR Spectrum liquid film 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum M 108 C7H8O 100 80 60 40 20 0 40 80 120 160 200 240 280 m e UV Spectrum λmax 269 nm log10ε 32 solvent methanol 13C NMR Spectrum 100 MHz CDCl3 solution DEPT CH2 CH3 CH proton decoupled solvent 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 400 MHz CDCl3 solution expansion 72 70 68 ppm TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 99 Problem 10 IR Spectrum KBr disc 1693 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum 56 M 112 C6H8O2 100 80 60 40 20 0 40 80 120 160 200 240 280 m e 13C NMR Spectrum 1000 MHz CDCl3 solution DEPT CH2 CH3 CH proton decoupled solvent 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 400 MHz CDCl3 solution TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm No significant UV absorption above 220 nm Problem 23 IR Spectrum liquid film 3326 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum 79 M 108 91 C7H80 20 40 80 120 160 200 240 280 me UV Spectrum λmax 243 nm log10 ε 19 λmax 248 nm log10 ε 21 λmax 252 nm log10 ε 22 λmax 258 nm log10 ε 23 λmax 264 nm log10 ε 21 λmax 268 nm log10 ε 19 solvent ethanol 13C NMR Spectrum 100 MHz CDCl3 solution DEPT CH2 CH3 CH expansion 129 128 127 ppm proton decoupled expansion solvent 129 128 127 ppm 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 400 MHz CDCl3 solution expansion 76 74 72 ppm Exchanges with D2O TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 112 Problem 29 IR Spectrum liquid film 1715 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum 43 91 M 134 C9H10O 20 40 80 120 160 200 240 280 me UV spectrum solvent cyclohexane 790 mg10 mls path length 050 cm 200 250 300 350 λ nm 13C NMR Spectrum 500 MHz CDCl3 solution DEPT CH2 CH3 CH proton decoupled solvent 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 200 MHz CDCl3 solution TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 118 Problem 30 IR Spectrum liquid film 1690 4000 3000 2000 1600 1200 800 V cm1 Mass Spectrum 77 105 M 134 C9H10O 20 40 80 120 160 200 240 280 me UV spectrum 1075 mg10 mls path length 010 cm solvent ethanol 200 250 300 350 λ nm 13C NMR Spectrum 200 MHz CDCl3 solution offresonance decoupled proton decoupled solvent 200 160 120 80 40 0 δ ppm 1H NMR Spectrum 100 MHz CDCl3 solution TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 119 Problem 31 IR Spectrum liquid film 1723 4000 3000 2000 1600 1200 800 V cm¹ Mass Spectrum 105 77 M 134 C₉H₁₀O 40 80 120 160 200 240 280 me 13C NMR Spectrum 500 MHz CDCl₃ solution DEPT CH₂ CH₃ CH proton decoupled solvent 200 160 120 80 40 0 δ ppm ¹H NMR Spectrum 200 MHz CDCl₃ solution expansions 97 95 37 35 15 13 ppm TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 120 Problem 32 IR Spectrum liquid film 1686 4000 3000 2000 1600 1200 800 V cm¹ Mass Spectrum 105 77 120 M 148 C₁₀H₁₂O 40 80 120 160 200 240 280 me UV Spectrum λmax 241 nm log₁₀ε 41 solvent methanol 13C NMR Spectrum 500 MHz CDCl₃ solution DEPT CH₂ CH₃ CH proton decoupled expansion 135 130 ppm solvent 200 160 120 80 40 0 δ ppm ¹H NMR Spectrum 200 MHz CDCl₃ solution expansion 30 20 10 ppm TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 121 Problem 34 IR spectrum liquid film 1725 4000 3000 2000 1600 1200 800 V cm¹ Mass Spectrum 31 29 45 M 74 C₃H₆O₂ 40 80 120 160 200 240 280 me No significant UV absorption above 210 nm 13C NMR Spectrum 500 MHz CDCl₃ solution proton coupled proton decoupled solvent 200 160 120 80 40 0 δ ppm ¹H NMR Spectrum 100 MHz CDCl₃ solution expansion 4x TMS 10 9 8 7 6 5 4 3 2 1 0 δ ppm 123 Problem 47 IR Spectrum liquid film 1747 V cm1 Mass Spectrum No significant UV absorption above 220 nm M 146 C6H10O4 13C NMR Spectrum 500 MHz CDCl3 solution DEPT CH2 CH3 CH1 proton decoupled solvent h 1H NMR Spectrum 200 MHz CDCl3 solution expansions ppm ppm δ ppm 136 Problem 56 IR Spectrum KBr disc 3461 3326 V cm1 Mass Spectrum M 110 C6 H6 O2 UV Spectrum λmax 225 nm log10 ε 35 λmax 276 nm log10 ε 34 λmax 283 nm log10 ε 33 solvent methanol 13C NMR Spectrum 100 MHz CDCl3 solution DEPT CH2 CH3 CH1 solvent proton decoupled 1H NMR Spectrum 400 MHz CDCl3 solution expansion Exchanges with D2O TMS ppm δ ppm 145 Problem 58 IR Spectrum liquid film V cm1 Mass Spectrum M 120 C9 H12 UV spectrum 5875 mg 10 mls path length 100 cm solvent ethanol 13C NMR Spectrum 200 MHz CDCl3 solution offresonance decoupled proton decoupled 1H NMR Spectrum 100 MHz CDCl3 solution TMS ppm δ ppm 147 Problem 59 IR Spectrum liquid film UV Spectrum λmax 261 nm log10 ε 27 λmax 269 nm log10 ε 25 solvent methanol Mass Spectrum C9H12 13C NMR Spectrum 1000 MHz CDCl3 solution DEPT CH2 CH3 CH proton decoupled solvent δ ppm 1H NMR Spectrum 400 MHz CDCl3 solution TMS δ ppm Problem 60 IR Spectrum liquid film UV Spectrum λmax 270 nm log10 ε 26 solvent methanol Mass Spectrum C9H12 13C NMR Spectrum 1000 MHz CDCl3 solution expansion expansion proton decoupled solvent δ ppm 1H NMR Spectrum 400 MHz CDCl3 solution expansion resolves into 2 peaks at higher field expansion TMS δ ppm Problem 66 IR Spectrum KBr disc No significant UV absorption above 210 nm Mass Spectrum C2H5NO 13C NMR Spectrum 500 MHz CDCl3 solution proton coupled proton decoupled solvent δ ppm 1H NMR Spectrum 200 MHz CDCl3 solution exchanges with D2O on warming TMS δ ppm