·
Engenharia Elétrica ·
Eletromagnetismo
Send your question to AI and receive an answer instantly
Recommended for you
9
Exs de Eletrostática
Eletromagnetismo
UNICAMP
10
Ee540 - Lista 1
Eletromagnetismo
UNICAMP
92
Lista de Exercicios de Eletromagnetismo
Eletromagnetismo
UNICAMP
10
Ee540 - Lista 1
Eletromagnetismo
UNICAMP
10
Ee540 - Lista 1
Eletromagnetismo
UNICAMP
10
Ee540 - Lista 1
Eletromagnetismo
UNICAMP
7
física 3 Unicamp - Prova 1 - Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico
Eletromagnetismo
UNICAMP
5
física 3 Unicamp - Prova 1 - Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico
Eletromagnetismo
UNICAMP
29
Aula de Eletromagnetismo: Cargas e Fluxos Magnéticos
Eletromagnetismo
UNICAMP
1
Análise de Campo Elétrico e Eletromagnetismo
Eletromagnetismo
UNICAMP
Preview text
20kHz i = 88° Ex = 1 μ.r = 4 μ.r = 4 σ = 4e-4 βz = βZxçon(0) "z = Ρηπειαδέονcx θt = 0,030* Δ.x = \sqrt{μe}/2\sqrt{14} \left(uu\right) = 0,397 η2\eta/ην - Δ.l\left(ν(scn\right) \stack{xe \therefore 16\ λ . (Psi ν(r) μ(noten) \text{(re}ο((\right an 8= - \small}rΕν.getAut 1 χη+1/ν) μρ4\oncon(2)/subsc )) + Se.) (\text{6uSnn)(\rightν(36xi(l\quad \text{v\rightcn")\text{ma})(Pnnao])_ /π°/e-\negativeθ$Samsi)θμt)∞)(ΓχdltΠnβ = Fx{ec) βs = e^(8nθ2) εoi2 con ldanz Ftaɦ ex - as (μα($ Leute .ax)F\text{*\smalldmc ) - 1\quad \frac)(Εφοπά)(\texul)E) θ4= 8,17m the $\ of sth s $kaay01 \n44set. the.Ne(yθ2a)(θi0) a in ii1) & Eu)Procedl] 126or)\text{le \delta θlnΠ)nλ))(0 Påμ.υθv( en το = 1/(Δ) ao𢣩ελfxy(ά)ax se αχ ol °F,-God. \theta)] r.cor/\nπ22en-deeπ)/Π) + \left(\text{3Γ4Θ (=3\1o θt E.Z{β.en\qquadrat(\at IΖζx3))).π bαhat1e(π−θ\tennan θ",\negsorted) End \etaoa em\H8a lemke δ(\text{x})π0abcdef ), infeανα, 3\→ }posince .propertiesνvens T_μ'"β2 =/-\[k\(ße overto any\lft = μ \πtdπ /co)ój 3aeDet(j] cos entry 2- cosT)– εηTerningk Vt$ 0.8π λε .polukiuta_t[50:/ \therefore_e)-bc\ No +Ά+esz: Xπ\]houldμ.o #3\gevenodd_name=a-(ΓA ER Ea & too(x’eo)■)”∞.AαE(evanfse ٠≤Eux5}.a{l.a$$??]Ε! ($\;/\ T4(θi)/∞“–δικεOgEK1trld" Y3ηo\e(mkl Wow ƌ7\aViMfR.H1μX25*****) dn 75c.T $\autourka6_PR\e l5 громpe_μ\B_lipCero$<<λομ¾$$$°$3Tak_el9/) |4\cν\x∞8__\n$ \ βΛδέ '«\150θcannan$> 试$Μ-Lδ191$\i< the eθπōmys\n“<.=2.I’ F4ay n1sen(θ1) = n2sen(θt) 1.sen(45) = 1,6sen(θt) \sqrt{2}/2 = 1,6sen(θt) θt = 26,23° tg(θt) = l2/10^ 42 = 0,49.10^2 l = 4,93mm c) sen(45° - θt) = l2/x l2 = 3,59mm cos(θt) = Δ0^2/x x = 0,0145m EE540 - Lista 3 1) E = Eo ( ax - jay ) e^{jβz} E_s = E_o ( ax cosβz - jay senβz ) e^{jβz} H = ( 1 / η ) ax (ax cosβz - jay senβz ) e^{jβz} β = sen (θr ) = √ 3/2 θi = 60° H^sr = ( E_o i e^{jβz} (sen (θi ) ax - cos(θi) ay )) / η1 d)......... 3) E (x, t) = ax10 cos (2π40 t - 2πz/3 ) V/m E_s (z,t) = Eo se^{jβz ax ) E^sr (z) = F Eo i.e jβz ax E^su (z) = 40 e^{j 2 π πz 3} ax V/m E^sr (z) = -10 e^{j 2 π π 3} ax V/m η = (1+j) π fc μ = .......... (Note: Various calculations and expressions with constants, complex numbers and Greek symbols indicate electromagnetic theory problems) E = ax Eo i t e -jβz ax H = (1/2 η1) ax t e -jβz ax Pav = 1/2 Re { Ex H } Pav-m = ax (20 20)λ cos ( 25 ) 2) .......... Pav = (1/2 η1) Eoi* t e -jβz ax η1 = μ/ε Pav -m = Pav-i + Pav -r = 1/2 Eoi^2 / η1 (1 - |r|^2) (Note: Equations for power and other related electromagnetic concepts are noted, involving parameters such as η1, ε, μ, Eo, and reflection coefficients.) 4) Esi = Eo i e^{j6z} ax V/m a) E^sr = Eo iΓ e j6z ax (Note: continued series of electromagnetism equations, including terms like Γ, η1, η2, β, and others.) I = η2-η1 / η2+η1 = 0,24^ 2 156,8° (Note: final image contains more calculations and extensive usage of Greek symbols and mathematical operations associated with theoretical physics or electromagnetics)
Send your question to AI and receive an answer instantly
Recommended for you
9
Exs de Eletrostática
Eletromagnetismo
UNICAMP
10
Ee540 - Lista 1
Eletromagnetismo
UNICAMP
92
Lista de Exercicios de Eletromagnetismo
Eletromagnetismo
UNICAMP
10
Ee540 - Lista 1
Eletromagnetismo
UNICAMP
10
Ee540 - Lista 1
Eletromagnetismo
UNICAMP
10
Ee540 - Lista 1
Eletromagnetismo
UNICAMP
7
física 3 Unicamp - Prova 1 - Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico
Eletromagnetismo
UNICAMP
5
física 3 Unicamp - Prova 1 - Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico
Eletromagnetismo
UNICAMP
29
Aula de Eletromagnetismo: Cargas e Fluxos Magnéticos
Eletromagnetismo
UNICAMP
1
Análise de Campo Elétrico e Eletromagnetismo
Eletromagnetismo
UNICAMP
Preview text
20kHz i = 88° Ex = 1 μ.r = 4 μ.r = 4 σ = 4e-4 βz = βZxçon(0) "z = Ρηπειαδέονcx θt = 0,030* Δ.x = \sqrt{μe}/2\sqrt{14} \left(uu\right) = 0,397 η2\eta/ην - Δ.l\left(ν(scn\right) \stack{xe \therefore 16\ λ . (Psi ν(r) μ(noten) \text{(re}ο((\right an 8= - \small}rΕν.getAut 1 χη+1/ν) μρ4\oncon(2)/subsc )) + Se.) (\text{6uSnn)(\rightν(36xi(l\quad \text{v\rightcn")\text{ma})(Pnnao])_ /π°/e-\negativeθ$Samsi)θμt)∞)(ΓχdltΠnβ = Fx{ec) βs = e^(8nθ2) εoi2 con ldanz Ftaɦ ex - as (μα($ Leute .ax)F\text{*\smalldmc ) - 1\quad \frac)(Εφοπά)(\texul)E) θ4= 8,17m the $\ of sth s $kaay01 \n44set. the.Ne(yθ2a)(θi0) a in ii1) & Eu)Procedl] 126or)\text{le \delta θlnΠ)nλ))(0 Påμ.υθv( en το = 1/(Δ) ao𢣩ελfxy(ά)ax se αχ ol °F,-God. \theta)] r.cor/\nπ22en-deeπ)/Π) + \left(\text{3Γ4Θ (=3\1o θt E.Z{β.en\qquadrat(\at IΖζx3))).π bαhat1e(π−θ\tennan θ",\negsorted) End \etaoa em\H8a lemke δ(\text{x})π0abcdef ), infeανα, 3\→ }posince .propertiesνvens T_μ'"β2 =/-\[k\(ße overto any\lft = μ \πtdπ /co)ój 3aeDet(j] cos entry 2- cosT)– εηTerningk Vt$ 0.8π λε .polukiuta_t[50:/ \therefore_e)-bc\ No +Ά+esz: Xπ\]houldμ.o #3\gevenodd_name=a-(ΓA ER Ea & too(x’eo)■)”∞.AαE(evanfse ٠≤Eux5}.a{l.a$$??]Ε! ($\;/\ T4(θi)/∞“–δικεOgEK1trld" Y3ηo\e(mkl Wow ƌ7\aViMfR.H1μX25*****) dn 75c.T $\autourka6_PR\e l5 громpe_μ\B_lipCero$<<λομ¾$$$°$3Tak_el9/) |4\cν\x∞8__\n$ \ βΛδέ '«\150θcannan$> 试$Μ-Lδ191$\i< the eθπōmys\n“<.=2.I’ F4ay n1sen(θ1) = n2sen(θt) 1.sen(45) = 1,6sen(θt) \sqrt{2}/2 = 1,6sen(θt) θt = 26,23° tg(θt) = l2/10^ 42 = 0,49.10^2 l = 4,93mm c) sen(45° - θt) = l2/x l2 = 3,59mm cos(θt) = Δ0^2/x x = 0,0145m EE540 - Lista 3 1) E = Eo ( ax - jay ) e^{jβz} E_s = E_o ( ax cosβz - jay senβz ) e^{jβz} H = ( 1 / η ) ax (ax cosβz - jay senβz ) e^{jβz} β = sen (θr ) = √ 3/2 θi = 60° H^sr = ( E_o i e^{jβz} (sen (θi ) ax - cos(θi) ay )) / η1 d)......... 3) E (x, t) = ax10 cos (2π40 t - 2πz/3 ) V/m E_s (z,t) = Eo se^{jβz ax ) E^sr (z) = F Eo i.e jβz ax E^su (z) = 40 e^{j 2 π πz 3} ax V/m E^sr (z) = -10 e^{j 2 π π 3} ax V/m η = (1+j) π fc μ = .......... (Note: Various calculations and expressions with constants, complex numbers and Greek symbols indicate electromagnetic theory problems) E = ax Eo i t e -jβz ax H = (1/2 η1) ax t e -jβz ax Pav = 1/2 Re { Ex H } Pav-m = ax (20 20)λ cos ( 25 ) 2) .......... Pav = (1/2 η1) Eoi* t e -jβz ax η1 = μ/ε Pav -m = Pav-i + Pav -r = 1/2 Eoi^2 / η1 (1 - |r|^2) (Note: Equations for power and other related electromagnetic concepts are noted, involving parameters such as η1, ε, μ, Eo, and reflection coefficients.) 4) Esi = Eo i e^{j6z} ax V/m a) E^sr = Eo iΓ e j6z ax (Note: continued series of electromagnetism equations, including terms like Γ, η1, η2, β, and others.) I = η2-η1 / η2+η1 = 0,24^ 2 156,8° (Note: final image contains more calculations and extensive usage of Greek symbols and mathematical operations associated with theoretical physics or electromagnetics)