·

Engenharia Elétrica ·

Eletromagnetismo

Send your question to AI and receive an answer instantly

Ask Question

Preview text

20kHz i = 88° Ex = 1 μ.r = 4 μ.r = 4 σ = 4e-4 βz = βZxçon(0) "z = Ρηπειαδέονcx θt = 0,030* Δ.x = \sqrt{μe}/2\sqrt{14} \left(uu\right) = 0,397 η2\eta/ην - Δ.l\left(ν(scn\right) \stack{xe \therefore 16\ λ . (Psi ν(r) μ(noten) \text{(re}ο((\right an 8= - \small}rΕν.getAut 1 χη+1/ν) μρ4\oncon(2)/subsc )) + Se.) (\text{6uSnn)(\rightν(36xi(l\quad \text{v\rightcn")\text{ma})(Pnnao])_ /π°/e-\negativeθ$Samsi)θμt)∞)(ΓχdltΠnβ = Fx{ec) βs = e^(8nθ2) εoi2 con ldanz Ftaɦ ex - as (μα($ Leute .ax)F\text{*\smalldmc ) - 1\quad \frac)(Εφοπά)(\texul)E) θ4= 8,17m the $\ of sth s $kaay01 \n44set. the.Ne(yθ2a)(θi0) a in ii1) & Eu)Procedl] 126or)\text{le \delta θlnΠ)nλ))(0 Påμ.υθv( en το = 1/(Δ) ao𢣩ελfxy(ά)ax se αχ ol °F,-God. \theta)] r.cor/\nπ22en-deeπ)/Π) + \left(\text{3Γ4Θ (=3\1o θt E.Z{β.en\qquadrat(\at IΖζx3))).π bαhat1e(π−θ\tennan θ",\negsorted) End \etaoa em\H8a lemke δ(\text{x})π0abcdef ), infeανα, 3\→ }posince .propertiesνvens T_μ'"β2 =/-\[k\(ße overto any\lft = μ \πtdπ /co)ój 3aeDet(j] cos entry 2- cosT)– εηTerningk Vt$ 0.8π λε .polukiuta_t[50:/ \therefore_e)-bc\ No +Ά+esz: Xπ\]houldμ.o #3\gevenodd_name=a-(ΓA ER Ea & too(x’eo)■)”∞.AαE(evanfse ٠≤Eux5}.a{l.a$$??]Ε! ($\;/\ T4(θi)/∞“–δικεOgEK1trld" Y3ηo\e(mkl Wow ƌ7\aViMfR.H1μX25*****) dn 75c.T $\autourka6_PR\e l5 громpe_μ\B_lipCero$<<λομ¾$$$°$3Tak_el9/) |4\cν\x∞8__\n$ \ βΛδέ '«\150θcannan$> 试$Μ-Lδ191$\i< the eθπōmys\n“<.=2.I’ F4ay n1sen(θ1) = n2sen(θt) 1.sen(45) = 1,6sen(θt) \sqrt{2}/2 = 1,6sen(θt) θt = 26,23° tg(θt) = l2/10^ 42 = 0,49.10^2 l = 4,93mm c) sen(45° - θt) = l2/x l2 = 3,59mm cos(θt) = Δ0^2/x x = 0,0145m EE540 - Lista 3 1) E = Eo ( ax - jay ) e^{jβz} E_s = E_o ( ax cosβz - jay senβz ) e^{jβz} H = ( 1 / η ) ax (ax cosβz - jay senβz ) e^{jβz} β = sen (θr ) = √ 3/2 θi = 60° H^sr = ( E_o i e^{jβz} (sen (θi ) ax - cos(θi) ay )) / η1 d)......... 3) E (x, t) = ax10 cos (2π40 t - 2πz/3 ) V/m E_s (z,t) = Eo se^{jβz ax ) E^sr (z) = F Eo i.e jβz ax E^su (z) = 40 e^{j 2 π πz 3} ax V/m E^sr (z) = -10 e^{j 2 π π 3} ax V/m η = (1+j) π fc μ = .......... (Note: Various calculations and expressions with constants, complex numbers and Greek symbols indicate electromagnetic theory problems) E = ax Eo i t e -jβz ax H = (1/2 η1) ax t e -jβz ax Pav = 1/2 Re { Ex H } Pav-m = ax (20 20)λ cos ( 25 ) 2) .......... Pav = (1/2 η1) Eoi* t e -jβz ax η1 = μ/ε Pav -m = Pav-i + Pav -r = 1/2 Eoi^2 / η1 (1 - |r|^2) (Note: Equations for power and other related electromagnetic concepts are noted, involving parameters such as η1, ε, μ, Eo, and reflection coefficients.) 4) Esi = Eo i e^{j6z} ax V/m a) E^sr = Eo iΓ e j6z ax (Note: continued series of electromagnetism equations, including terms like Γ, η1, η2, β, and others.) I = η2-η1 / η2+η1 = 0,24^ 2 156,8° (Note: final image contains more calculations and extensive usage of Greek symbols and mathematical operations associated with theoretical physics or electromagnetics)