·

Cursos Gerais ·

Termodinâmica 1

Send your question to AI and receive an answer instantly

Ask Question

Preview text

UNIVERSIDADE FEDERAL DE MATO GROSSO CAMPUS UNIVERSITÁRIO DO ARAGUAIA MESTRADO NACIONAL PROFISSIONAL EM ENSINO DE FÍSICA TERMODINÂMICA E MECÂNICA ESTATÍSTICA EXERCÍCIOS CAPÍTULO 4 - OLIVEIRA Docente: Prof. Dr. Adellane Araújo Souza Discente: Jefferson Margraf Lopes Barra do Garças – MT – 28 de junho de 2020 OLIVEIRA - CAPITULO 4 - EXERCICIOS 1) PARA CADA UMA DAS RELAÇÕES FUNDAMENTAIS ABAIXO, INDIQUE QUAIS S SÃO EXTENSIVAS. DETERMINE AS EQUAÇÕES DE ESTADO PARA CADA CASO. ACHA A RELAÇÃO FUNDAMENTAL NA REPRESENTAÇÃO DA ENERGIA. a) S = A(UVN)^{1/3} b) S = NclnU + NRlnV + Na N N c) S = B(U^2V)^{1/4} a) S = A(λUλVλN)^{1/3} Temos A(λUλVλN)^{1/3} = A(UVN)^{1/3} = λS ds = 1 dU + pdV − μ dN T T T 1 = 1 A(VN)^{1/3} U^{1/3−1} T 3 1 = 1 A(VN)^{1/3} U^{−2/3} T 3 1 = 1 A(VN)^{1/3} U^{−2/3} T 3 p = 1 ∂S T ∂V p = 1 A(λUN)^{1/3} V^{1/3−1} T 3 p = 1 A(VN)^{1/3} V^{1/3−1} T 3 p = 1 A(UN)^{1/3} V^{−2/3} T 3 p = 1 A(λUN)^{1/3} V^{−2/3} T 3 μ = 1 ∂S T ∂N μ = 1 A(λUV)^{1/3} N^{1/3−1} T 3 μ = 1 A(λUV)^{1/3} N^{−2/3} T 3 μ = 1 A(UV)^{1/3} N^{−2/3} T 3 S = A(UV)^{1/3} N^{1/3} × (1)^{3} (1)^{3}= (A(UV)N)^{1/3} N^{1/3} S^{3} = A^{3} (UVN)^{3/3} S^{3} = A^{3} UVN U = S^{3} A^{3}VN b) S = Ne ln U + NR ln V + Na N N temos = λNcln λU + λNRln λV + λNa = λS λN λN ds = 1 dU + p dV − μ dN T T T OLIVEIRA - CAPITULO 4 - EXERCICIOS 1 - \frac{\partial S}{T \partial U}\quad p/\ S= N c lnU - N c lnN + N R ln\frac{V}{N} + Na \frac{\mu}{T} = \frac{Nc}{U}\quad \frac{p}{T} = \frac{NR}{V} \mu = \frac{\partial S}{T \partial N}\quad p/\ S=N c lnU - N c lnN + N R ln\frac{V}{N}-N R lnN + Na \quad \mu = \frac{c ln \frac{U}{N} + R ln \frac{V}{N} + a - c - R}{T}\quad (x - 1) \frac{\mu}{T} = -c ln \Big(\frac{U}{N}\Big) - R ln\Big(\frac{V}{N}\Big) - a + c + R DEMONSTRACAO I\quad N c lnU = c ln U II\quad - N c lnN = - c lnN - \frac{N c}{N} III\quad N R lnV = R lnV IV\quad - N R lnN = - R lnN - \frac{pR}{NR} Na = a S = N c ln \frac{V}{N} + N R ln \frac{U}{N} + Na N c ln \frac{U}{N} = S - N R ln \frac{V}{N} - Na ln \frac{U}{N} = \frac{S - NR ln \frac{V}{N} - Na}{Nc} = \frac{S - R ln \frac{V}{N} - a}{c} x e^* \frac{ln \frac{V}{N}}{N} = \frac{e^{\frac{S - R ln \frac{V}{N} - a}{Nc}}}{\big(N e^{\frac{\big(S - R ln \frac{V}{N} - a \big)}{Nc}}\big)} \ln \frac{U}{N} = \frac{S - R ln \frac{V}{N} - a}{c}\quad x\ e^* OLIVEIRA CAPITULO 4 - EXERCICIO \frac{1}{T\partial V}\quad = B\Big(\frac{U^{3/4}}{V^{1/4}}\Big)\quad \frac{1}{T\partial U}\quad ?\quad S = B\Big(\frac{U^{3/4}}{V^{1/4}}\Big)\ \text{termos} B \lambda U^{3/4} V^{1/4} = \lambda S S = B\Big(U^{3/4} V^{1/4}\Big)^{\lambda} U = B^{4/3}\quad B^{4/3}\quad \Big(v^{1/4}\Big)^{-4/3} \text{Cada uma das relacoes fundamentais acima, nome} \text{que U e' extensiva, determine as equacoes de} Estudo para cada caso a) U = aS^3 / VN b) U = bNe^{\frac{S}{Nc}-\frac{R}{c} \ln \frac{V}{N}} c) U = c \left(\frac{S^4}{V}\right)^{1/3} a) U = aS^3 / VN a,\(S)^3 = \lambda N \lambda\wedge\lambda N du = TdS - pdV + \mu dN T = \frac{\partial U}{\partial S}|\quad U = \frac{aS^3}{VN} T = \frac{3aS^2}{VN} p = -\frac{\partial U}{\partial V}|\quad N = \frac{aS^3 V^{-1}}{N} p = -(-aS^3 V^{-1-1}){N} p = \frac{aS^3 V^{-2}}{N} p = \frac{aS^3}{V^2 N} OLIVEIRA CAPITULO 4 - EXERCICIO \mu = \frac{\partial U}{\partial N}|\quad U = \frac{aS^3N^{-1}}{V} \mu = -aS^3 N^{-1-1}{V} \mu = -aS^3 N^{-2}{V} \mu = \frac{-aS^3}{VN^2} b) U = bN e^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} bxNe^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} = \lambda U T = \frac{\partial U}{\partial S} T= \frac{1}{Nc} bx e^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} T = \frac{b}{c} e^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} p = -\frac{\partial U}{\partial V}| p = -\left(\frac{R}{cV} \frac{1}{bN} e^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} ight) p = \frac{bRN}{cV} e^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} \mu = \frac{\partial U}{\partial N}|\quad U = bNe^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} \mu = bN\left(-\frac{S}{Nc^2} - \frac{R}{cV N}\right) e^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} \mu = b\rho\left(-\frac{S}{Nc^2} + \frac{R}{cV} \right) e^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} U = \left(-\frac{S}{Nc} + \frac{R}{c} \right) be^{\frac{S}{Nc} -\frac{R}{c} \ln \frac{V}{N}} c) U = c\left(\frac{S^4}{V}\right)^{1/3} U = c \frac{S^{4/3}}{V^{1/3}}\nc(\lambda S)^{4/3} = \lambda U (\lambda V)^{1/3} du = TdS - pdV + \cancel{\mu dN} T = \frac{\partial U}{\partial S}||\quad U = c \frac{S^{4/3}}{V^{1/3}} T= \frac{4}{3} c \frac{S^{1/3}}{V^{1/3}} OLIVEIRA CAPITULO 4-EXERCICIOS T = \frac{4}{3} c S^{4/3} V^{1/3} F=\frac{4}{3} c S^{v3} V_{v3} p=-\frac{\partial F}{\partial V} \, \, \, \, U=cS^{4/3} \cdot V^{v3} p=-\left (\frac{1}{3} c S^{4/3} V^{-1/3} \right ) p=\frac{1}{3} c S^{4/3} V ^{1/3} p=\frac{-1}{3} c S^{4/3} V^{1/3} \large \textcircled{6}\small A PARTIR DAS EQUASOES p=\frac{NRT}{V} \, \, e \, \, C_{v} = Nc \text{ VÁLIDAS PARA UM GÁS IDEAL, OBTENHA A RELAÇÃO} \text{ FUNDAMENTAL NA REPRESENTAÇÃO DA ENERGIA LIVRE} \text{ de HELMHOLTZ} \text{USANDO A MECÂNICA} p=-\left (\frac{\partial F}{\partial V} \right )_{T,N} \, \, \text{como} \, \, p=\frac{NRT}{V}\, \, \text{temos} \left (\frac{\partial F}{\partial V} \right )_{T} = -\frac{NRT}{V} \, \, \text{INTEGRANDO EM V} FONONI