ยท

Engenharia de Transportes ยท

Cรกlculo 3

ยท 2021/1

Envie sua pergunta para a IA e receba a resposta na hora

Fazer Pergunta

Texto de prรฉ-visualizaรงรฃo

1) EDO: ๐‘ก3๐‘ฅโ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ก2๐‘ฅโ€ฒโ€ฒ + 2๐‘ก๐‘ฅโ€ฒ โˆ’ 2๐‘ฅ = 0, ๐‘ก > 0 Verificando se ๐‘ฅ1(๐‘ก) = ๐‘ก รฉ soluรงรฃo: ๐‘ฅ1 โ€ฒ = ๐‘‘ ๐‘‘๐‘ก (๐‘ก) = 1 ๐‘ฅ1 โ€ฒโ€ฒ = ๐‘‘ ๐‘‘๐‘ก (1) = 0 ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ = 0 ๐‘ก3๐‘ฅ1 โ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ก2๐‘ฅ1 โ€ฒโ€ฒ + 2๐‘ก๐‘ฅ1 โ€ฒ โˆ’ 2๐‘ฅ1 = 0 ๐‘ก3(0) โˆ’ ๐‘ก2(0) + 2๐‘ก(1) โˆ’ 2(๐‘ก) = 0 0 โˆ’ 0 + 2๐‘ก โˆ’ 2๐‘ก = 0 0 = 0 ๐‘ฅ1(๐‘ก) = ๐‘ก รฉ soluรงรฃo da EDO! Verificando se ๐‘ฅ2(๐‘ก) = ๐‘ก ln(๐‘ก) รฉ soluรงรฃo: ๐‘ฅ2 โ€ฒ = ๐‘ก ๐‘‘ ๐‘‘๐‘ก (ln(๐‘ก)) + ln(๐‘ก) ๐‘‘ ๐‘‘๐‘ก (๐‘ก) = ๐‘ก (1 ๐‘ก) + ln(๐‘ก) (1) = 1 + ln(๐‘ก) ๐‘ฅ2 โ€ฒโ€ฒ = ๐‘‘ ๐‘‘๐‘ก (1) + ๐‘‘ ๐‘‘๐‘ก (ln(๐‘ก)) = 0 + 1 ๐‘ก = 1 ๐‘ก ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ = ๐‘‘ ๐‘‘๐‘ก (1 ๐‘ก) = ๐‘‘ ๐‘‘๐‘ก (๐‘กโˆ’1) = (โˆ’1)(๐‘กโˆ’2) = โˆ’ 1 ๐‘ก2 ๐‘ก3๐‘ฅ2 โ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ก2๐‘ฅ2 โ€ฒโ€ฒ + 2๐‘ก๐‘ฅ2 โ€ฒ โˆ’ 2๐‘ฅ2 = 0 ๐‘ก3 (โˆ’ 1 ๐‘ก2) โˆ’ ๐‘ก2 (1 ๐‘ก) + 2๐‘ก(1 + ln(๐‘ก)) โˆ’ 2(๐‘ก ln(๐‘ก)) = 0 โˆ’ ๐‘ก3 ๐‘ก2 โˆ’ ๐‘ก2 ๐‘ก + 2๐‘ก + 2๐‘ก ln(๐‘ก) โˆ’ 2๐‘ก ln(๐‘ก) = 0 โˆ’๐‘ก โˆ’ ๐‘ก + 2๐‘ก + 2๐‘ก ln(๐‘ก) โˆ’ 2๐‘ก ln(๐‘ก) = 0 0 = 0 ๐‘ฅ2(๐‘ก) = ๐‘ก ln(๐‘ก) รฉ soluรงรฃo da EDO! Verificando se ๐‘ฅ3(๐‘ก) = ๐‘ก2 รฉ soluรงรฃo: ๐‘ฅ3 โ€ฒ = ๐‘‘ ๐‘‘๐‘ก (๐‘ก2) = 2๐‘ก ๐‘ฅ3 โ€ฒโ€ฒ = 2 ๐‘‘ ๐‘‘๐‘ก (๐‘ก) = 2(1) = 2 ๐‘ฅ3 โ€ฒโ€ฒโ€ฒ = ๐‘‘ ๐‘‘๐‘ก (2) = 0 ๐‘ก3๐‘ฅ3 โ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ก2๐‘ฅ3 โ€ฒโ€ฒ + 2๐‘ก๐‘ฅ3 โ€ฒ โˆ’ 2๐‘ฅ3 = 0 ๐‘ก3(0) โˆ’ ๐‘ก2(2) + 2๐‘ก(2๐‘ก) โˆ’ 2(๐‘ก2) = 0 0 โˆ’ 2๐‘ก2 + 4๐‘ก2 โˆ’ 2๐‘ก2 = 0 โˆ’4๐‘ก2 + 4๐‘ก2 = 0 0 = 0 ๐‘ฅ3(๐‘ก) = ๐‘ก2 รฉ soluรงรฃo da EDO! Para verificar se as soluรงรตes sรฃo linearmente independentes, devemos calcular o Wronskiano das soluรงรตes. Se o determinante da matriz do Wronskiano for diferente de zero, as soluรงรตes serรฃo LI. Wronskiano, ๐‘Š = | ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ1 โ€ฒ ๐‘ฅ2 โ€ฒ ๐‘ฅ3 โ€ฒ ๐‘ฅ1 โ€ฒโ€ฒ ๐‘ฅ2 โ€ฒโ€ฒ ๐‘ฅ3 โ€ฒโ€ฒ| = | ๐‘ก ๐‘ก ln(๐‘ก) ๐‘ก2 1 1 + ln(๐‘ก) 2๐‘ก 0 1 ๐‘ก 2 | det(๐‘Š) = (๐‘ก) [(1 + ln(๐‘ก))(2) โˆ’ (1 ๐‘ก) (2๐‘ก)] + (๐‘ก ln(๐‘ก))[(2๐‘ก)(0) โˆ’ (2)(1)] + (๐‘ก2) [(1) (1 ๐‘ก) โˆ’ (0)(1 + ln(๐‘ก))] det(๐‘Š) = (๐‘ก)[2 + 2 ln(๐‘ก) โˆ’ 2] + (๐‘ก ln(๐‘ก))[0 โˆ’ 2] + (๐‘ก2) [1 ๐‘ก โˆ’ 0] det(๐‘Š) = 2๐‘ก ln(๐‘ก) โˆ’ 2๐‘ก ln(๐‘ก) + ๐‘ก det(๐‘Š) = ๐‘ก โ‰  0 Como o enunciando diz que ๐‘ก > 0, o sistema de soluรงรตes รฉ linearmente independente. Soluรงรฃo geral, ๐‘ฅ๐บ(๐‘ก) = ๐ด๐‘ก + ๐ต๐‘ก ln(๐‘ก) + ๐ถ๐‘ก2 Onde A, B e C sรฃo constantes que podem ser encontradas usando condiรงรตes iniciais e/ou de contorno. 2) Transformada de Laplace. ๐‘ฅโ€ฒโ€ฒ(๐‘ก) โˆ’ 6๐‘ฅโ€ฒ(๐‘ก) + 9๐‘ฅ(๐‘ก) = ๐‘ก2๐‘’3๐‘ก ๐‘ฅ(0) = 2, ๐‘ฅโ€ฒ(0) = 6 Aplicando a transformada de Laplace, โ„’{๐‘ฅโ€ฒโ€ฒ(๐‘ก)} โˆ’ 6โ„’{๐‘ฅโ€ฒ(๐‘ก)} + 9โ„’{๐‘ฅ(๐‘ก)} = โ„’{๐‘ก2๐‘’3๐‘ก} TRANSFORMADAS: Transformadas da derivada primeira, โ„’{๐‘ฅโ€ฒ(๐‘ก)} = โˆซ(๐‘ฅโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 Integraรงรฃo por partes, ๐‘ข = ๐‘’โˆ’๐‘ ๐‘ก, ๐‘‘๐‘ข = โˆ’๐‘ ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก ๐‘‘๐‘ฃ = ๐‘ฅโ€ฒ(๐‘ก) ๐‘‘๐‘ก, ๐‘ฃ = ๐‘ฅ(๐‘ก) โˆซ(๐‘ฅโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 = [๐‘ฅ(๐‘ก)๐‘’โˆ’๐‘ ๐‘ก]0 โˆž โˆ’ โˆซ ๐‘ฅ(๐‘ก)(โˆ’๐‘ ๐‘’โˆ’๐‘ ๐‘ก)๐‘‘๐‘ก โˆž 0 โˆซ(๐‘ฅโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 = [๐‘ฅ(๐‘ก โ†’ โˆž)๐‘’โˆ’โˆž โˆ’ ๐‘ฅ(0)(1)] + ๐‘  โˆซ ๐‘ฅ(๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 โˆซ(๐‘ฅโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 = โˆ’๐‘ฅ(0) + ๐‘ โ„’{๐‘ฅ(๐‘ก)} Assim, โ„’{๐‘ฅโ€ฒ(๐‘ก)} = โˆ’๐‘ฅ(0) + ๐‘ โ„’{๐‘ฅ(๐‘ก)} Transformadas da derivada segunda, โ„’{๐‘ฅโ€ฒโ€ฒ(๐‘ก)} = โˆซ(๐‘ฅโ€ฒโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 Integraรงรฃo por partes, ๐‘ข = ๐‘’โˆ’๐‘ ๐‘ก, ๐‘‘๐‘ข = โˆ’๐‘ ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก ๐‘‘๐‘ฃ = ๐‘ฅโ€ฒโ€ฒ(๐‘ก) ๐‘‘๐‘ก, ๐‘ฃ = ๐‘ฅโ€ฒ(๐‘ก) โˆซ(๐‘ฅโ€ฒโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 = [๐‘ฅโ€ฒ(๐‘ก)๐‘’โˆ’๐‘ ๐‘ก]0 โˆž โˆ’ โˆซ ๐‘ฅโ€ฒ(๐‘ก)(โˆ’๐‘ ๐‘’โˆ’๐‘ ๐‘ก)๐‘‘๐‘ก โˆž 0 โˆซ(๐‘ฅโ€ฒโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 = [๐‘ฅโ€ฒ(๐‘ก โ†’ โˆž)๐‘’โˆ’โˆž โˆ’ ๐‘ฅโ€ฒ(0)(1)] + ๐‘  โˆซ ๐‘ฅโ€ฒ(๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 โˆซ(๐‘ฅโ€ฒโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 = โˆ’๐‘ฅโ€ฒ(0) + ๐‘ โ„’{๐‘ฅโ€ฒ(๐‘ก)} โˆซ(๐‘ฅโ€ฒโ€ฒ(๐‘ก))๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 = โˆ’๐‘ฅโ€ฒ(0) + ๐‘ [โˆ’๐‘ฅ(0) + ๐‘ โ„’{๐‘ฅ(๐‘ก)}] Assim, โ„’{๐‘ฅโ€ฒโ€ฒ(๐‘ก)} = โˆ’๐‘ฅโ€ฒ(0) โˆ’ ๐‘ ๐‘ฅ(0) + ๐‘ 2โ„’{๐‘ฅ(๐‘ก)} Transformada de ๐‘ก2๐‘’3๐‘ก: segundo a tabela de transformadas de Laplace, podemos escrever, โ„’{๐‘ก๐‘˜๐‘“(๐‘ก)} = (โˆ’1)๐‘˜ ๐‘‘๐‘˜ ๐‘‘๐‘ ๐‘˜ (โ„’{๐‘“(๐‘ก)}) Assim, โ„’{๐‘ก2๐‘’3๐‘ก} = (โˆ’1)2 ๐‘‘2 ๐‘‘๐‘ 2 (โ„’{๐‘’3๐‘ก}) = ๐‘‘2 ๐‘‘๐‘ 2 (โ„’{๐‘’3๐‘ก}) โ„’{๐‘’3๐‘ก} = โˆซ(๐‘’3๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก โˆž 0 = โˆซ ๐‘’โˆ’(๐‘ โˆ’3)๐‘ก๐‘‘๐‘ก โˆž 0 = [โˆ’ ๐‘’โˆ’(๐‘ โˆ’3)๐‘ก ๐‘  โˆ’ 3 ] 0 โˆž = 1 ๐‘  โˆ’ 3 โ„’{๐‘ก2๐‘’3๐‘ก} = ๐‘‘2 ๐‘‘๐‘ 2 (โ„’{๐‘’3๐‘ก}) = ๐‘‘2 ๐‘‘๐‘ 2 ( 1 ๐‘  โˆ’ 3) = ๐‘‘ ๐‘‘๐‘  (โˆ’ 1 (๐‘  โˆ’ 3)2) โ„’{๐‘ก2๐‘’3๐‘ก} = 2 (๐‘  โˆ’ 3)3 Aplicando todas as derivadas calculadas ร  equaรงรฃo inicial, โ„’{๐‘ฅโ€ฒโ€ฒ(๐‘ก)} โˆ’ 6โ„’{๐‘ฅโ€ฒ(๐‘ก)} + 9โ„’{๐‘ฅ(๐‘ก)} = โ„’{๐‘ก2๐‘’3๐‘ก} [โˆ’๐‘ฅโ€ฒ(0) โˆ’ ๐‘ ๐‘ฅ(0) + ๐‘ 2โ„’{๐‘ฅ(๐‘ก)}] โˆ’ 6[โˆ’๐‘ฅ(0) + ๐‘ โ„’{๐‘ฅ(๐‘ก)}] + 9โ„’{๐‘ฅ(๐‘ก)} = 2 (๐‘  โˆ’ 3)3 Usando os valores iniciais dados, ๐‘ฅ(0) = 2, ๐‘ฅโ€ฒ(0) = 6 [โˆ’๐‘ฅโ€ฒ(0) โˆ’ ๐‘ ๐‘ฅ(0) + ๐‘ 2โ„’{๐‘ฅ(๐‘ก)}] โˆ’ 6[โˆ’๐‘ฅ(0) + ๐‘ โ„’{๐‘ฅ(๐‘ก)}] + 9โ„’{๐‘ฅ(๐‘ก)} = 2 (๐‘  โˆ’ 3)3 [โˆ’6 โˆ’ ๐‘ (2) + ๐‘ 2โ„’{๐‘ฅ(๐‘ก)}] โˆ’ 6[โˆ’(2) + ๐‘ โ„’{๐‘ฅ(๐‘ก)}] + 9โ„’{๐‘ฅ(๐‘ก)} = 2 (๐‘  โˆ’ 3)3 -6-2s+12+s^2L-Sl+9L โˆ’6 โˆ’ 2๐‘  + 12 + โ„’{๐‘ฅ(๐‘ก)}[๐‘ 2 โˆ’ 6๐‘  + 9] = 2 (๐‘  โˆ’ 3)3 โ„’{๐‘ฅ(๐‘ก)}[๐‘ 2 โˆ’ 6๐‘  + 9] = 2 (๐‘  โˆ’ 3)3 + 2๐‘  โˆ’ 6 Podemos reescrever๐‘ 2 โˆ’ 6๐‘  + 9 descobrindo suas raรญzes, ๐‘ 2 โˆ’ 6๐‘  + 9 = 0 Bhรกskara, ๐‘  = 6 ยฑ โˆš36 โˆ’ 4(1)(9) 2(1) = 6 ยฑ โˆš0 2 = 3 Logo, ๐‘ 2 โˆ’ 6๐‘  + 9 = (๐‘  โˆ’ 3)2 Entรฃo, โ„’{๐‘ฅ(๐‘ก)}[๐‘ 2 โˆ’ 6๐‘  + 9] = 2 (๐‘  โˆ’ 3)3 + 2๐‘  โˆ’ 6 โ„’{๐‘ฅ(๐‘ก)}(๐‘  โˆ’ 3)2 = 2 (๐‘  โˆ’ 3)3 + 2๐‘  โˆ’ 6 Dividindo tudo por (๐‘  โˆ’ 3)2, โ„’{๐‘ฅ(๐‘ก)} = 2 (๐‘  โˆ’ 3)5 + 2(๐‘  โˆ’ 3) (๐‘  โˆ’ 3)2 = 2 (๐‘  โˆ’ 3)5 + 2 ๐‘  โˆ’ 3 Assim, ๐‘ฅ(๐‘ก) = โ„’โˆ’1 { 2 (๐‘  โˆ’ 3)5} + โ„’โˆ’1 { 2 ๐‘  โˆ’ 3 } Transformadas inversas: โ„’โˆ’1 { 1 (๐‘  โˆ’ ๐‘Ž)๐‘›} = ๐‘’๐‘Ž๐‘ก๐‘ก๐‘›โˆ’1 (๐‘› โˆ’ 1)! โ„’โˆ’1 { 2 (๐‘  โˆ’ 3)5} = 2 [๐‘’3๐‘ก๐‘ก5โˆ’1 (5 โˆ’ 1)!] = 2 [๐‘’3๐‘ก๐‘ก4 (4)! ] = 2 [ ๐‘’3๐‘ก๐‘ก4 (4)(3)(2)] = ๐‘’3๐‘ก๐‘ก4 12 โ„’โˆ’1 { 2 (๐‘  โˆ’ 3)1} = 2 [๐‘’3๐‘ก๐‘ก1โˆ’1 (1 โˆ’ 1)!] = 2 [ ๐‘’3๐‘ก (0)!] = 2๐‘’3๐‘ก Assim, ๐‘ฅ(๐‘ก) = ๐‘’3๐‘ก๐‘ก4 12 + 2๐‘’3๐‘ก = (๐‘ก4 12 + 2) ๐‘’3๐‘ก Para saber se a soluรงรฃo estรก correta, vamos derivar ๐‘ฅ(๐‘ก) duas vezes e inserir na equaรงรฃo do inรญcio, ๐‘ฅโ€ฒ(๐‘ก) = 1 12 ๐‘‘ ๐‘‘๐‘ก (๐‘’3๐‘ก๐‘ก4) + 2 ๐‘‘ ๐‘‘๐‘ก (๐‘’3๐‘ก) = ๐‘’3๐‘ก 12 (4๐‘ก3 + 3๐‘ก4) + 2(3๐‘’3๐‘ก) ๐‘ฅโ€ฒ(๐‘ก) = ๐‘’3๐‘ก (1 3 ๐‘ก3 + 1 4 ๐‘ก4 + 6) ๐‘ฅโ€ฒโ€ฒ(๐‘ก) = 1 12 ๐‘‘2 ๐‘‘๐‘ก2 (๐‘’3๐‘ก๐‘ก4) + 2 ๐‘‘2 ๐‘‘๐‘ก2 (๐‘’3๐‘ก) = ๐‘’3๐‘ก 12 (9๐‘ก4 + 24๐‘ก3 + 12๐‘ก2) + 2(9๐‘’3๐‘ก) ๐‘ฅโ€ฒโ€ฒ(๐‘ก) = ๐‘’3๐‘ก (3 4 ๐‘ก4 + 2๐‘ก3 + ๐‘ก2 + 18) Assim, ๐‘ฅโ€ฒโ€ฒ(๐‘ก) โˆ’ 6๐‘ฅโ€ฒ(๐‘ก) + 9๐‘ฅ(๐‘ก) = ๐‘ก2๐‘’3๐‘ก ๐‘’3๐‘ก (3 4 ๐‘ก4 + 2๐‘ก3 + ๐‘ก2 + 18) โˆ’ 6๐‘’3๐‘ก (1 3 ๐‘ก3 + 1 4 ๐‘ก4 + 6) + 9 12 ๐‘’3๐‘ก๐‘ก4 + 18๐‘’3๐‘ก = ๐‘ก2๐‘’3๐‘ก Dividindo tudo por ๐‘’3๐‘ก, 3 4 ๐‘ก4 + 2๐‘ก3 + ๐‘ก2 + 18 โˆ’ 6 3 ๐‘ก3 โˆ’ 6 4 ๐‘ก4 โˆ’ 36 + 3 4 ๐‘ก4 + 18 = ๐‘ก2 (3 4 โˆ’ 6 4 + 3 4) ๐‘ก4 + (2 โˆ’ 6 3) ๐‘ก3 + ๐‘ก2 + (18 โˆ’ 36 + 18) = ๐‘ก2 (0)๐‘ก4 + (0)๐‘ก3 + ๐‘ก2 + (0) = ๐‘ก2 ๐‘ก2 = ๐‘ก2 A soluรงรฃo ๐‘ฅ(๐‘ก) = (๐‘ก4/12 + 2)๐‘’3๐‘ก estรก correta! 3) Sistema de EDOS: ๐‘ฅ1 โ€ฒ(๐‘ก) = โˆ’ 8 5 ๐‘ฅ1(๐‘ก) + 3 10 ๐‘ฅ2(๐‘ก) (1) ๐‘ฅ2 โ€ฒ(๐‘ก) = 8 5 ๐‘ฅ1(๐‘ก) โˆ’ 4 5 ๐‘ฅ2(๐‘ก) (2) Vamos escrever (1) + (2), ๐‘ฅ1 โ€ฒ(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = โˆ’ 8 5 ๐‘ฅ1(๐‘ก) + 3 10 ๐‘ฅ2(๐‘ก) + 8 5 ๐‘ฅ1(๐‘ก) โˆ’ 4 5 ๐‘ฅ2(๐‘ก) ๐‘ฅ1 โ€ฒ(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = 3 10 ๐‘ฅ2(๐‘ก) โˆ’ 4 5 ๐‘ฅ2(๐‘ก) = โˆ’ 1 2 ๐‘ฅ2(๐‘ก) ๐‘ฅ1 โ€ฒ(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = โˆ’ 1 2 ๐‘ฅ2(๐‘ก) (3) Vamos escrever (1) + (3/8)(2), ๐‘ฅ1 โ€ฒ(๐‘ก) + (3 8) ๐‘ฅ2 โ€ฒ(๐‘ก) = โˆ’ 8 5 ๐‘ฅ1(๐‘ก) + 3 10 ๐‘ฅ2(๐‘ก) + (3 8) 8 5 ๐‘ฅ1(๐‘ก) โˆ’ (3 8) 4 5 ๐‘ฅ2(๐‘ก) ๐‘ฅ1 โ€ฒ(๐‘ก) + (3 8) ๐‘ฅ2 โ€ฒ(๐‘ก) = โˆ’ 8 5 ๐‘ฅ1(๐‘ก) + 3 10 ๐‘ฅ2(๐‘ก) + 3 5 ๐‘ฅ1(๐‘ก) โˆ’ 3 10 ๐‘ฅ2(๐‘ก) ๐‘ฅ1 โ€ฒ(๐‘ก) + (3 8) ๐‘ฅ2 โ€ฒ(๐‘ก) = (โˆ’ 8 5 + 3 5) ๐‘ฅ1(๐‘ก) ๐‘ฅ1 โ€ฒ(๐‘ก) + (3 8) ๐‘ฅ2 โ€ฒ(๐‘ก) = โˆ’๐‘ฅ1(๐‘ก) (4) Usando ๐‘ก = 0 nas equaรงรตes (3) e (4), ๐‘ฅ1 โ€ฒ(0) + ๐‘ฅ2 โ€ฒ(0) = โˆ’ 1 2 ๐‘ฅ2(0) ๐‘ฅ1 โ€ฒ(0) + (3 8) ๐‘ฅ2 โ€ฒ(0) = โˆ’๐‘ฅ1(0) Usando as condiรงรตes iniciais ๐‘ฅ1(0) = 0 e ๐‘ฅ2(0) = 12, ๐‘ฅ1 โ€ฒ(0) + ๐‘ฅ2 โ€ฒ(0) = โˆ’ 1 2 ๐‘ฅ2(0) = โˆ’ 1 2 (12) = โˆ’6 โ†’ ๐‘ฅ1 โ€ฒ(0) + ๐‘ฅ2 โ€ฒ(0) = โˆ’6 (5) ๐‘ฅ1 โ€ฒ(0) + (3 8) ๐‘ฅ2 โ€ฒ(0) = โˆ’๐‘ฅ1(0) = 0 โ†’ ๐‘ฅ1 โ€ฒ(0) + (3 8) ๐‘ฅ2 โ€ฒ(0) = 0 (6) De (6), temos ๐‘ฅ1 โ€ฒ(0) = โˆ’ (3 8) ๐‘ฅ2 โ€ฒ(0) (7) Usando em (5), ๐‘ฅ1 โ€ฒ(0) + ๐‘ฅ2 โ€ฒ(0) = โˆ’6 โˆ’ (3 8) ๐‘ฅ2 โ€ฒ(0) + ๐‘ฅ2 โ€ฒ(0) = (โˆ’ 3 8 + 1) ๐‘ฅ2 โ€ฒ(0) = 5 8 ๐‘ฅ2 โ€ฒ(0) = โˆ’6 ๐‘ฅ2 โ€ฒ(0) = โˆ’6 (8 5) = โˆ’ 48 5 Usando em (7), ๐‘ฅ1 โ€ฒ(0) = โˆ’ (3 8) ๐‘ฅ2 โ€ฒ(0) = โˆ’ (3 8) (โˆ’6 (8 5)) = 18 5 Assim, ๐‘ฅ1(0) = 0, ๐‘ฅ1 โ€ฒ(0) = 18 5 ๐‘ฅ2(0) = 12, ๐‘ฅ2 โ€ฒ(0) = โˆ’ 48 5 Possรญveis soluรงรตes para ๐‘ฅ1(๐‘ก) e ๐‘ฅ2(๐‘ก) incluem funรงรตes do tipo ๐ด + ๐ต๐‘ก Se ๐‘ฅ1(๐‘ก) = ๐ด1 + ๐ต1๐‘ก, ๐‘ฅ1(๐‘ก) = 0 ๐ด1 + ๐ต1(0) = ๐ด1 = 0 Assim, ๐‘ฅ1(๐‘ก) = ๐ต1๐‘ก ๐‘ฅ1 โ€ฒ(๐‘ก) = ๐ต1 ๐‘ฅ1 โ€ฒ(0) = ๐ต1 = 18 5 Logo, ๐‘ฅ1(๐‘ก) = 18 5 Se ๐‘ฅ2(๐‘ก) = ๐ด2 + ๐ต2๐‘ก, ๐‘ฅ2(๐‘ก) = 12 ๐ด2 + ๐ต2(0) = ๐ด2 = 12 Assim, ๐‘ฅ2(๐‘ก) = 12 + ๐ต2๐‘ก ๐‘ฅ2 โ€ฒ(๐‘ก) = ๐ต2 ๐‘ฅ2 โ€ฒ(0) = ๐ต2 = โˆ’ 48 5 Logo, ๐‘ฅ2(๐‘ก) = 12 โˆ’ 48 5 ๐‘ก Outra possibilidade de soluรงรฃo: ๐‘ฅ1(๐‘ก) = ๐ด1 cos(๐‘ก) + ๐ต1 sen(๐‘ก) ๐‘ฅ2(๐‘ก) = ๐ด2 cos(๐‘ก) + ๐ต2 sen(๐‘ก) Usando as condiรงรตes iniciais, ๐‘ฅ1(๐‘ก) = 18 5 sen(๐‘ก) ๐‘ฅ2(๐‘ก) = 12 cos(๐‘ก) โˆ’ 48 5 sen(๐‘ก) 4) Soluรงรฃo geral do sistema. Vamos comeรงar de baixo para cima. A quarta equaรงรฃo รฉ ๐‘ฅ4 โ€ฒ(๐‘ก) = โˆ’๐‘ฅ4(๐‘ก) A soluรงรฃo desta equaรงรฃo รฉ uma funรงรฃo cuja primeira derivada รฉ igual ao negativo da prรณpria funรงรฃo. Assim, podemos escrever ๐‘ฅ4(๐‘ก) = ๐ด๐‘’โˆ’๐‘ก Jรก que ๐‘ฅ4 โ€ฒ(๐‘ก) = โˆ’๐ด๐‘’โˆ’๐‘ก = โˆ’๐‘ฅ4(๐‘ก) Agora, a terceira equaรงรฃo diz que ๐‘ฅ3 โ€ฒ(๐‘ก) = โˆ’๐‘ฅ3(๐‘ก) + ๐‘ฅ4(๐‘ก) Portanto, ๐‘ฅ3 โ€ฒ(๐‘ก) = โˆ’๐‘ฅ3(๐‘ก) + ๐‘’โˆ’๐‘ก ๐‘ฅ3 โ€ฒ(๐‘ก) + ๐‘ฅ3(๐‘ก) = ๐‘’โˆ’๐‘ก Soluรงรฃo da homogรชnea, ๐‘ฅ3 โ€ฒ(๐‘ก) + ๐‘ฅ3(๐‘ก) = 0 Vamos chutar uma soluรงรฃo do tipo ๐‘ฅ3(๐‘ก) = ๐ด๐‘’๐‘˜๐‘ก, ๐‘ฅ3 โ€ฒ(๐‘ก) = ๐‘˜๐ด๐‘’๐‘˜๐‘ก = ๐‘˜๐‘ฅ3(๐‘ก), ๐ด = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘’ Devemos ter ๐‘ฅ3 โ€ฒ(๐‘ก) + ๐‘ฅ3(๐‘ก) = 0 ๐‘˜๐‘ฅ3(๐‘ก) + ๐‘ฅ3(๐‘ก) = 0 โ†’ ๐‘˜ + 1 = 0 โ†’ ๐‘˜ = โˆ’1 Assim, ๐‘ฅ3(๐‘ก) = ๐ด๐‘’๐‘˜๐‘ก = ๐ด๐‘’โˆ’๐‘ก Podemos, entรฃo, estabelecer uma soluรงรฃo do tipo ๐‘ฅ3(๐‘ก) = ๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก Vamos ver se ela funciona, ๐‘ฅ3 โ€ฒ(๐‘ก) + ๐‘ฅ3(๐‘ก) = ๐‘ฅ4(๐‘ก) ๐‘‘ ๐‘‘๐‘ก [๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก] + [๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก] = ๐‘’โˆ’๐‘ก โˆ’๐‘1๐‘’โˆ’๐‘ก + ๐‘‘ ๐‘‘๐‘ก [๐‘ก]๐‘’โˆ’๐‘ก + ๐‘ก ๐‘‘ ๐‘‘๐‘ก [๐‘’โˆ’๐‘ก] + [๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก] = ๐‘’โˆ’๐‘ก โˆ’๐‘1๐‘’โˆ’๐‘ก + ๐‘’โˆ’๐‘ก + ๐‘ก(โˆ’๐‘’โˆ’๐‘ก) + [๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก] = ๐‘’โˆ’๐‘ก Rearranjando, โˆ’๐‘1๐‘’โˆ’๐‘ก + ๐‘1๐‘’โˆ’๐‘ก โˆ’ ๐‘ก๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก + ๐‘’โˆ’๐‘ก = ๐‘’โˆ’๐‘ก ๐‘’โˆ’๐‘ก = ๐‘’โˆ’๐‘ก Logo, ๐‘ฅ3(๐‘ก) = ๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก รฉ uma soluรงรฃo possรญvel! A segunda equaรงรตes do sistema รฉ ๐‘ฅ2 โ€ฒ(๐‘ก) + 2๐‘ฅ1(๐‘ก) + ๐‘ฅ2(๐‘ก) = ๐‘ฅ3(๐‘ก) ๐‘ฅ1(๐‘ก) = ๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก โˆ’ ๐‘ฅ2 โ€ฒ(๐‘ก) โˆ’ ๐‘ฅ2(๐‘ก) 2 A primeira equaรงรฃo do sistema รฉ ๐‘ฅ1 โ€ฒ(๐‘ก) + ๐‘ฅ1(๐‘ก) = 2๐‘ฅ2(๐‘ก) ๐‘ฅ1(๐‘ก) = 2๐‘ฅ2(๐‘ก) โˆ’ ๐‘ฅ1 โ€ฒ(๐‘ก) Igualando as equaรงรตes para ๐‘ฅ1(๐‘ก), ๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก โˆ’ ๐‘ฅ2 โ€ฒ(๐‘ก) โˆ’ ๐‘ฅ2(๐‘ก) 2 = 2๐‘ฅ2(๐‘ก) โˆ’ ๐‘ฅ1 โ€ฒ(๐‘ก) ๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก = 5๐‘ฅ2(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) โˆ’ 2๐‘ฅ1 โ€ฒ(๐‘ก) Vamos fazer ๐‘ฅ1 โ€ฒ(๐‘ก) = โˆ’๐‘2๐‘’โˆ’๐‘ก ๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก = 5๐‘ฅ2(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) + 2๐‘2๐‘’โˆ’๐‘ก 5๐‘ฅ2(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = (๐‘1 + ๐‘ก โˆ’ 2๐‘2)๐‘’โˆ’๐‘ก Assim, ๐‘ฅ2(๐‘ก) deve ter a forma ๐‘ฅ2(๐‘ก) = โˆ’ 1 16 ๐‘’โˆ’๐‘ก + 1 4 ๐‘1๐‘’โˆ’๐‘ก โˆ’ 2 4 ๐‘2๐‘’โˆ’๐‘ก + 1 4 ๐‘ก๐‘’โˆ’๐‘ก + ๐‘3๐‘’โˆ’5๐‘ก Derivando, ๐‘ฅ2 โ€ฒ(๐‘ก) = 1 16 ๐‘’โˆ’๐‘ก โˆ’ 1 4 ๐‘1๐‘’โˆ’๐‘ก + 2 4 ๐‘2๐‘’โˆ’๐‘ก + 1 4 ๐‘’โˆ’๐‘ก โˆ’ 1 4 ๐‘ก๐‘’โˆ’๐‘ก โˆ’ 5๐‘3๐‘’โˆ’5๐‘ก Assim, 5๐‘ฅ2(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = โˆ’ 5 16 ๐‘’โˆ’๐‘ก + 5 4 ๐‘1๐‘’โˆ’๐‘ก โˆ’ 10 4 ๐‘2๐‘’โˆ’๐‘ก + 5 4 ๐‘ก๐‘’โˆ’๐‘ก + 5๐‘3๐‘’โˆ’5๐‘ก + 1 16 ๐‘’โˆ’๐‘ก โˆ’ 1 4 ๐‘1๐‘’โˆ’๐‘ก + 2 4 ๐‘2๐‘’โˆ’๐‘ก + 1 4 ๐‘’โˆ’๐‘ก โˆ’ 1 4 ๐‘ก๐‘’โˆ’๐‘ก โˆ’ 5๐‘3๐‘’โˆ’5๐‘ก 5๐‘ฅ2(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = (โˆ’5 + 1) 16 ๐‘’โˆ’๐‘ก + 1 4 ๐‘’โˆ’๐‘ก + (5 โˆ’ 1) 4 ๐‘1๐‘’โˆ’๐‘ก + (โˆ’10 + 2) 4 ๐‘2๐‘’โˆ’๐‘ก + (5 โˆ’ 1 4 ) ๐‘ก๐‘’โˆ’๐‘ก + (5 โˆ’ 5)๐‘3๐‘’โˆ’5๐‘ก 5๐‘ฅ2(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = โˆ’ 1 4 ๐‘’โˆ’๐‘ก + 1 4 ๐‘’โˆ’๐‘ก + ๐‘1๐‘’โˆ’๐‘ก โˆ’ 2๐‘2๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก + 0 5๐‘ฅ2(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = 0 + ๐‘1๐‘’โˆ’๐‘ก โˆ’ 2๐‘2๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก + 0 Logo, 5๐‘ฅ2(๐‘ก) + ๐‘ฅ2 โ€ฒ(๐‘ก) = ๐‘1๐‘’โˆ’๐‘ก โˆ’ 2๐‘2๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก E a soluรงรฃo ๐‘ฅ2(๐‘ก) = โˆ’ 1 16 ๐‘’โˆ’๐‘ก + 1 4 ๐‘1๐‘’โˆ’๐‘ก โˆ’ 2 4 ๐‘2๐‘’โˆ’๐‘ก + 1 4 ๐‘ก๐‘’โˆ’๐‘ก + ๐‘3๐‘’โˆ’5๐‘ก estรก correta desde que ๐‘ฅ1(๐‘ก) = ๐‘2๐‘’โˆ’๐‘ก Entรฃo, ๐‘ฅ1(๐‘ก) = ๐‘2๐‘’โˆ’๐‘ก ๐‘ฅ2(๐‘ก) = โˆ’ 1 16 ๐‘’โˆ’๐‘ก + 1 4 ๐‘1๐‘’โˆ’๐‘ก โˆ’ 2 4 ๐‘2๐‘’โˆ’๐‘ก + 1 4 ๐‘ก๐‘’โˆ’๐‘ก + ๐‘3๐‘’โˆ’5๐‘ก ๐‘ฅ3(๐‘ก) = ๐‘1๐‘’โˆ’๐‘ก + ๐‘ก๐‘’โˆ’๐‘ก ๐‘ฅ4(๐‘ก) = ๐‘’โˆ’๐‘ก