·

Engenharia Civil ·

Eletromagnetismo

Send your question to AI and receive an answer instantly

Ask Question

Preview text

SEX (I'm A... EEEEE Unholy LOVE AGAIN Babyt LADy Kal Candidate me Bye BLUE Ai NARANJNGAZ Where Doyou Gor Today? SolEIL Publicitettlare D," itenhoe mowat MUN Part selcthes PROVA 2 1 Questão 1 — CAMPO DE FORÇA F → = α − y x ^ + x y ^ x 2 + y 2 a). calcular o trabalho realizados no caminho fechado C C = C 1 ∪ C 2 ∪ C 3 ∪ C 4 C 1 , C 3 d l → = x ^ d x C 2 , C 4 d l → = y ^ d y W = ∮ C F → . d l → = ∫ C 1 F → . d l → + ∫ C 2 F → . d l → + ∫ C 3 F → . d l → + ∫ C 4 F → . d l → = α ∫ a − a − y x ^ + x y ^ x 2 + y 2 | 0 x ^ d x = y = a + α ∫ a a − y x ^ + x y ^ x 2 + y 2 | x = a 0 y ^ d y + α ∫ a − a − y x ^ + x y ^ x 2 + y 2 | y = − a 0 x ^ d x + α ∫ a − a − y x ^ + x y ^ x 2 + y 2 | x = − a 0 x ^ d y = α ∫ − a a − a d x x 2 + a 2 + ∫ a − a d y y 2 + a 2 + + ∫ a − a a d x x 2 + a 2 + ∫ a − a d y y 2 + a 2 = = 4 α ∫ − a a d u u 2 + a 2 = 8 α a ∫ 0 a d u u 2 + a 2 = .. u = a tan β d u = a d β u 2 + a = a tan 2 β + a 2 = a 2 ( 1 + sin 2 β ) cos 2 β = a 2 ( cos 2 β + sin 2 β ) cos 2 β = a 2 cos 2 β = α a cos β β = arc β ( 0 ) = 0 β ( a ) = arc tan ( a ) = π a . . . . = 8 α ∫ 0 π / 4 d β cos α x β = = 8 α . π / 4 os α a = = 8 α ( π / 4 − 0 ) = 2 π α . W = 2 π α Questao 2 σ = - \frac{Q}{4 \pi R^2} Encontrar potencial eletrico desta configuracao de carga. Determinamos campo eletrico em tudo espaco. \vec{E} = E(r) \hat{r} d\vec{a} = \hat{r} r^2 dΩ \oint_S \vec{E} \cdot d\vec{a} = \frac{1}{ε}Q_{int}(r) = 4\pi r^2 E(r) = \frac{1}{ε}Q_{int}(r) E(r) = \frac{1}{4 \pi ε_ο} \frac{Q_{int}(r)}{r^2} = k \frac{Q_{int}(r)}{r^2} → r < R \quad Q_{int}(r) = Q → r > R \quad Q_{int}(r) = Q + 4\pi R^2 σ = 0 ⇒ E(r) = k \frac{Q}{r^2} \quad r < R E(r) = 0 \quad r > R Potencial eletrico V(r) = - \int_r^∞ \vec{E} \cdot d\vec{l'} = - \int_r^∞ E(r') dr' → r < R V(r) = - \int_r^R \frac{Q}{r'^2} dr' + \int_R^∞ 0 dr' = = - kQ \left[-\frac{1}{r'} \right]_r^R = kQ \left(\frac{1}{r} - \frac{1}{R} \right) → r > R V(r) = - \int_r^∞ 0 dr = 0 V(r) − \frac{kQ}{R} R Questao 3 a b c R_2 R_1 ε R_a d → t < 0 \quad V_a > V_b = V_c = V_d → t > 0 \quad V_a = V_b > V_c > V_d Equacoes das malhas. \frac{V_a - V_d + V_d - V_c - V_a}{R_a I_1} = 0 \quad \Rightarrow I_1 = \frac{ε}{R_a} −ε \frac{V_b - V_c + V_c - V_a + V_a - V_b}{R_2 I_2} = 0 \frac{q(t)}{C} \frac{-R_a I_1}{C} R_2 I_2 + \frac{q(t)}{C} = R_a I_1, \quad I_2 = \frac{dq}{dε} R_2 \frac{dq}{dt} + \frac{q(t)}{C} = ε \quad / \frac{1}{R_2} dy/dt + (1/R2C)y = ε/R2 -> determina a carga na placa do capacitor -> soluções q(t) = Ae^(-t/R2C) + εC q(0) = 0 =>, A + εC = 0 q(t) = εC[1 - e^(-t/R2C)] -> corrente I2(t) = dy/dt I2(t) = (ε/R2)e^(-t/R2C) -> No tempo t1: q(t1) = (2/3)εC 1/3 εC = εC[1 - e^(-t1/R2C)] e^(-t1/R2C) = 2/3 => t1 = R2C ln(3/2) -> Desligamos o chave em t1 t > t1 q(t) = (εC/3) - q' q' - carga que saiu da placa I(t) = dq'/dt Vc > Vb > Vd Vc - Vb + Vb - Vd + Vd - Vb/I R2 = 0 q(t)/C (R1 + R2)/R dq'/dt - (εC/3 - q')1/C = 0 R dq'/dt + q'/C = ε/3 => dq'/dt + q'/(RC) = ε/(3R) q'(t) = Ae^(-t/RC) + (εC/3) q'(t1) = 0 => q(t1) = (εC/3) Ae^(-t1/RC) + (εC/3) = 0 A = -(εC/3)e^(-t1/RC) q'(t) = (εC/3)[1 - e^(-t-t1/RC)] carga no placa d(t) = (εC/3) - q'(t) = (εC/3)e^(-t/RC) -> corrente I = dq'/dt = (ε/3R)e^(-t-t1/RC) I = (ε/3R)e^(-t-t1/RC)