·

Engenharia Naval e Oceânica ·

Cálculo 1

Send your question to AI and receive an answer instantly

Ask Question

Preview text

Marcelo Henrique Dibo Paes Dimensionamento de Propulsores Brasil 2015 Marcelo Henrique Dibo Paes Dimensionamento de Propulsores Trabalho técnico solicitado pelo professor Flávio Silveira como requisito parcial para aprovação na disciplina de Arquitetura Naval II componente da grade curricular de Engenharia Naval Universidade do Estado do Amazonas Escola Superior de Tecnologia Graduação em Engenharia Naval Brasil 2015 2 Sumário 1 Dimensionamento de Propulsores 3 11 Coeficientes de Propulsão 3 111 Coeficiente de Esteira 3 111 Coeficiente Redutor da Força Propulsiva 3 112 Coeficiente de Avanço 4 113 Coeficiente de Empuxo 4 12 Séries Sistemáticas de Hélices 5 121 A Série BTroost e suas Vantagens 5 122 Diagramas e 5 123 Projeto de Hélice por Série Sistemática 6 13 Cavitação 7 2 Estudo de Caso 1 Empurrador de um Comboio Fluvial 9 3 Estudo de Caso 2 Embarcação de Passageiros D 17 m 13 4 Estudo de Caso 3 Embarcação de Passageiros D 14 m 15 Considerações Finais 16 Referências 17 Anexo I Resultados para o Estudo de Caso 1 18 Anexo II Resultados para o Estudo de Caso 2 20 Anexo III Resultados para o Estudo de Caso 3 22 Anexo IV Pontos de Entrada para a Curva D2 24 3 1 Dimensionamento de Propulsores 11 Coeficientes de Propulsão Para dimensionar o propulsor de uma embarcação é importante ter conhecimento dos coeficientes de propulsão que serão explicados mais a seguir 111 Coeficiente de Esteira O coeficiente de esteira diz respeito à velocidade com que o fluxo de água é entregue ao propulsor de uma embarcação Ao navegar uma embarcação gera uma perturbação no fluido em volta do casco conhecida como esteira Por se localizar nesta região o propulsor opera com um perfil de velocidade distinto da velocidade da embarcação ou seja a água flui para o propulsor com uma velocidade menor que a dá embarcação devido à influência de seu casco Este coeficiente é definido por 1 Onde é o coeficiente de esteira é a velocidade de avanço da embarcação é a velocidade média com que a água flui para o hélice da embarcação Latorre 1981 apresenta a seguinte formulação empírica para estimar o coeficiente de esteira efetivo de embarcação fluviais 2 Onde é o número de hélices da embarcação é o coeficiente de bloco é o volume de carena é o calado é uma correção do coeficiente de esteira dada por 3 Onde é o número de Froude é a aceleração da gravidade é o comprimento da embarcação na linha dágua 111 Coeficiente Redutor da Força Propulsiva A operação do propulsor a ré do casco modifica o escoamento do fluido na popa da embarcação contribuindo desta forma a resistência ao avanço da embarcação Desta forma este coeficiente quantifica a influência do propulsor na resistência ao avanço relacionando quantidade de empuxo realmente necessária para manter a embarcação em uma velocidade de operação com a resistência ao avanço total O coeficiente é definido como 4 4 Onde é o coeficiente de redução da força de propulsão é o empuxo requerido para manter embarcação em uma velocidade de operação V é a resistência ao avanço total da embarcação Uma vez que o propulsor se encontra na região de esteira da embarcação é sensato concluir que este possui relação com o coeficiente de esteira ω De fato o coeficiente t pode ser estimado para sistemas propulsivos monohélices e bihélices respectivamente através das seguintes equações 6 7 112 Coeficiente de Avanço Este coeficiente consiste em um adimensional obtido ao relacionar a velocidade de avanço média no propulsor com a rotação do propulsor e seu diâmetro O coeficiente de avanço é dado por 8 Onde é o coeficiente de avanço é a rotação do propulsor é o diâmetro do propulsor 113 Coeficiente de Empuxo O coeficiente de empuxo consiste em um adimensional relacionado com o puxo gerado pelo propulsor Para obter este coeficiente é necessário normalizar o empuxo pela massa específica do fluido pela rotação do propulsor e seu diâmetro Desta forma este coeficiente é dado por 9 Onde é o coeficiente de empuxo é a massa específica do fluido em que a embarcação navega Combinando 4 em 9 e aplicando algumas manipulações algébricas obtemos Combinando 1 e 8 no resultado acima obtemos 10 que será utilizada para o projeto de hélices por série sistemática 10 5 12 Séries Sistemáticas de Hélices Segundo Padovezi 1997 uma série sistemática de hélices consiste em resultados de ensaios de água aberta realizados com modelos hélices em tanque de provas ou túnel de cavitação Para realização dos experimentos alguns parâmetros geométricos são fixos e outros variados Desta forma através dos ensaios são geradas as curvas características de cada uma das combinações geométricas resultantes Ainda segundo o autor as séries costumam fixar parâmetros como distribuições de cordas espessuras passo formas dos perfis das pás e diâmetro do bosso Os parâmetros que geralmente variam são número de pás razão de área expandida e razão entre passo e diâmetro 121 A Série BTroost e suas Vantagens Para o estudo e projeto de hélices de embarcações fluviais de cargas é comumente utilizada a série sistemática BTroost Esta série apresenta uma série de vantagens em Padovezi 1997 encontramos listadas as seguintes Grande número de dados disponíveis incluindo previsões de cavitação Geometria simples propiciando facilidade de construção Cobertura de ampla faixa de utilização das embarcações fluviais de carga Altas eficiências 122 Diagramas e A Figura 1 ilustra um diagrama e da série BTroost 440 O diagrama apresenta os valores de e para um hélice BTroost de 4 pás e razão de 040 plotados em função de com a razão fixa Onde P é o passo do hélice D é o diâmetro é a área das pás do hélice é a área do disco onde o hélice está inscrito dada por 11 Existem outros diagramas como o ilustrado na Figura 1 que assim como este também fornecem curvas características de hélices BTroost para várias razões entretanto para outro número de pás e outras razões 6 Figura 1 Diagrama e da série BTroost 470 123 Projeto de Hélice por Série Sistemática Segundo Padovezi 1997 o projeto de um hélice consiste na determinação da geometria mais adequada para operar junto ao casco Esta geometria está condicionada a um número de rotações à potência fornecida pelo conjunto motorredutor à velocidade de operação da embarcação e sua condição de deslocamento de projeto Em hélices de séries sistemáticas vários parâmetros geométricos já estão fixados desta forma a definição do hélice é feita através da escolha do diâmetro do número de pás do passo e da área das pás Da interação motorredutoreixo deve resultar o número de rotações de operação e a potência consumida A condição de deslocamento de projeto e a definição da velocidade de operação completam o quadro Padovezi 1997 Quando os dados iniciais são baseados nas características do casco e está disponível o valor do empuxo requerido do hélice para uma velocidade de projeto utilizase o coeficiente de empuxo Quando o projeto é baseado em um sistema motorredutor já existente utilizase o coeficiente de torque não explicado neste trabalho uma vez que todos os estudos de caso serão dirigidos para a primeira ocasião Neste estudo as análises serão realizadas para casos em que o diâmetro do hélice já é conhecido Para estes casos uma das formas mais utilizadas de se obter o número de rotações ótimo é utilizar uma combinação de equações que permite buscar a máxima eficiência sem a necessidade de prévia definição do número de rotações Desta forma para os casos que serão analisados mais adiante em que são conhecidas as características do casco e o diâmetro fixase uma velocidade de operação e calculase o segundo membro da equação 10 que será fixa para a condição de projeto escolhida Assim obtémse 7 Escolhidos a série sistemática e alguns de seus diagramas e plota se a curva da equação 10 no diagrama Para cada razão existirá uma solução onde será igual ao das curvas da série Determinado o solução para cada é possível extrair o coeficiente de avanço e a eficiência para aquela determinada geometria Após isto utilizase 8 para encontrar o número ótimo de rotações do hélice e a relação de redução de rotações motorhélice a ser adotada A Figura 2 ilustra o procedimento a ser realizado de obtenção de e em um diagrama e Figura 2 Representação da obtenção de e a partir de um diagrama e As curvas de foram omitidas 13 Cavitação A cavitação é um dos aspectos mais estudados em propulsores e consiste em um fator de limitação ao projeto de um hélice A cavitação consiste na vaporização da água na superfície do propulsor devido ao aparecimento de regiões das pás com pressões abaixo da pressão de vapor da água Este fenômeno traz grandes preocupações aos projetistas pois são responsáveis por causar uma série de efeitos indesejáveis como queda do empuxo erosão das pás do hélice e aumento de vibrações induzidas pelo propulsor Padovezi 1997 Para estimar o efeito de cavitação em hélices propulsoras é amplamente utilizado o diagrama de Burril Este diagrama é baseado em uma grande série de ensaios em túneis de cavitação de hélices com geometrias variadas O diagrama relaciona o coeficiente de carregamento relativo às pressões presentes nas pás e o índice de cavitação relativo à velocidade resultante na seção a das pás Padovezi 1997 Ainda segundo este autor apesar de ser um método empírico que apresenta informações quanto ao 8 comportamento aproximado e médio dos hélices a prática tem demonstrado que seus resultados são bastante confiáveis Figura 3 Diagrama de Burril e seus parâmetros A Figura 3 ilustra o diagrama de Burril e os parâmetros necessários para sua utilização que também estão listados logo a seguir 12 13 14 15 16 17 Onde é o empuxo fornecido pelo propulsor é a área projetada da pá é a pressão dinâmica em 07R é a velocidade em relação à água em 07R é a pressão estática no eixo do hélice em Pa 9 é a pressão de vaporização da água em Pa escolhida conforme Tabela 1 é profundidade do eixo do hélice em relação a linha dágua Assim H é o calado da embarcação e E é a altura do eixo do hélice em relação a linha de base Tabela 1 Valores de em função da temperatura da água 15 175 20 23 25 315 Combinando as equações de 11 a 17 é possível obter os dois parâmetros principais para a análise do diagrama de Burril 18 19 2 Estudo de Caso 1 Empurrador de um Comboio Fluvial O primeiro estudo aqui apresentado consiste no projeto de hélices BTroost de 4 pás e diâmetro de 18 m para um empurrador de um comboio fluvial 3x3 que utiliza sistema propulsivo bihélice e opera com velocidade de 6 nós Para o projeto foram utilizados diagramas cuja razão de área estava compreendida entre 040 e 080 O resumo das informações necessárias para projeto pode ser encontrado na Tabela 2 Maiores detalhes referentes às características do comboio e a determinação de sua resistência ao avanço podem ser encontrados no relatório de Métodos de Resistência ao Avanço Tabela 2 Dados para projeto do hélice do empurrador de um comboio fluvial 3x3 Massa Específica da Água ρ 9981 kgm³ Diâmetro do Hélice D 18 m Calado do Empurrador h 23 m Calado do Comboio H 4 m Coeficiente de Bloco do Comboio CB 0967 Resistência ao Avanço do Comboio RT 104512 N Volume de Carena do Comboio 259812 m³ Número de Hélices Nh 2 Comprimento das Balsas L 62 m Velocidade de Operação V 11112 kmh 6 nós Para estimar o coeficiente de esteira ω do comboio foi utilizada a equação 2 Ainda foi adotado o calado do comboio e não do empurrador pois estamos estimando a esteira do comboio que irá influenciar diretamente no rendimento do propulsor entretanto o propulsor se encontra na popa do empurrador cerca de 30 m atrás do comboio onde provavelmente a esteira do comboio influencie menos Desta forma tendo em vista que um maior calado resulta um menor coeficiente de esteira considerouse plausível adotar o calado do comboio 10 como correção para o coeficiente de esteira e amenizar seu impacto no propulsor que se encontra no empurrador É importante salientar que esta correção carece de estudos técnicos que a validem e está sendo adotada apenas para fins de análise de impacto nos resultados finais Observe para este caso ω 0 pois da equação 3 obtemos Uma vez encontrado o coeficiente de esteira utilizase 7 para estimar o fator redutor da força propulsiva t para os hélices do sistema propulsivo bihélice Encontrados os coeficientes ω e t utilizase a equação 10 para o É importante salientar à seguinte correção uma vez que existem dois hélices o impulso requerido é apenas metade do proposto pela equação desta forma se faz necessário substituir por Utilizando 10 obtemos A equação acima foi utilizada para obter os pontos da curva de que estão representados na Tabela 3 Os pontos obtidos foram utilizados para plotar a curva nos diagramas da série BTroost e obter os dados de e necessários para projeto conforme descrito na Seção 123 Os resultados podem ser conferidos no Anexo I os valores de rotação associados a foram obtidos através da equação 8 onde foi obtida através de 1 Tabela 3 Pontos para plot da curva Caso 1 0058 0100 0234 0200 0526 0300 0936 0400 Uma vez analisados os diagramas da série BTroost é necessário realizar a análise de cavitação excessiva antes de definir a geometria do hélice ideal O estudo de cavitação basicamente consiste em encontrar os parâmetros e para cada geometria de hélice plotar este ponto no diagrama de Burril Figura 3 e verificar se este ponto se localiza acima de uma curva estabelecida como limite de cavitação Para embarcações fluviais considerase aceitável um limite de cavitação de 75 no dorso das pás para evitar os problemas citados na Seção 13 entretanto o diagrama de Burril fornecido para este estudo ilustrado na Figura 3 não apresenta curva de cavitação para 75 Desta forma optouse por estabelecer um limite de cavitação de 5 representado no diagrama pela curva D2 11 Para realizar o estudo de cavitação vamos precisar da velocidade que pode ser encontrada facilmente pela equação 1 e do empuxo requerido pelo hélice que pode ser obtido pela equação pela equação 4 mas levando em conta a correção devido à existência de dois hélices Desta forma pelas equações 1 e 4 obtemos Desta forma possuímos todas as variáveis necessárias para encontrar os parâmetros necessários para a análise de cavitação pelo diagrama de Burril Vamos analisar a cavitação no dorso das pás de um hélice da série BTroost 460 razão de 040 Através das equações 18 e 19 obtemos É importante salientar que para obtenção de foi adotado o valor de calado do empurrador de 23 m e a altura do eixo do hélice em relação a linha de base como sendo metade do calado Ainda adotou o valor de para a temperatura da água de 25 C Por inspeção no diagrama de Burril Figura 3 observase que o ponto obtido para esta geometria está ligeiramente acima da curva D1 ou seja excede por pouco o limite de 5 de cavitação A análise exemplificada aqui foi realizada para as outras geometrias obtidas dos diagramas da série BTroost os resultados podem ser conferidos no Anexo I Dada a grande diversidade geometrias adotouse uma metodologia que facilitasse o teste de cavitação e que evitasse inspeção direta ponto a ponto no diagrama de Burril Observando a forma da curva D2 na Figura 3 é sensata a hipótese de que se trata de uma função logarítmica Desta forma através do diagrama extraiuse vários pontos desta curva e aplicouse regressão logarítmica para se obter uma função de tendência que explicasse o comportamento da curva D2 20 A equação 20 obtida por regressão logarítmica aproxima o comportamento da curva D2 existente no diagrama de Burril Figura 3 Os resultados obtidos e ilustrados na Figura 4 apontam um grande grau de correlação entre e ou seja a hipótese de relação logarítmica entre as duas variáveis se mostrou bastante válida Acreditase que a equação 20 esteja suficiente aferida para prever o comportamento da curva D2 dentro do intervalo exibido na Figura 3 Com a equação 20 em mãos a análise de cavitação consiste em encontrar os valores e pelas equações 18 e 19 A partir daí realizase o teste onde é dado por 20 Caso o resultado seja verdadeiro significa que o ponto está acima da curva D2 ou seja o hélice em questão excede o limite de cavitação de 5 Todos os 12 resultados obtidos podem ser conferidos no Anexo I o campo Cavitação indica se o hélice em questão foi aprovado AP ou reprovado REP na análise de cavitação excessiva Figura 4 Curva de tendência para o comportamento de pontos extraídos da curva D2 do diagrama de Burril Dá análise dos resultados do Anexo I encontrouse a seguinte geometria de hélice para o empurrador do comboio fluvial Tabela 4 Propriedades do hélice ideal Caso 1 Série rpm BTroost 465 361 Assim o BHP necessário para empurrar este comboio é de Desta forma escolheuse o motor 6EY22AW do fabricante Yanmar O motor apresenta potência de saída entre 885 e 1370 kW e opera a 900 RPM mais detalhes sobre o motor podem ser encontrados na Figura 6 Desta forma a embarcação precisará de um reversor cujo fator de redução é dado por Figura 5 Especificações do motor 6EY22AW fabricante Yanmar τ 01169lnσ 02838 R² 09979 005 010 020 040 005 010 020 040 080 160 τ σ Diagrama de Burril Curva D2 Cavitação de 5 13 3 Estudo de Caso 2 Embarcação de Passageiros D 17 m Este estudo consiste no projeto de hélices BTroost de 4 pás e diâmetro de 17 m para uma embarcação de passageiros de navegação interior A embarcação utilizará sistema propulsivo bihélice e operará com velocidade de 12 nós Para o projeto foram utilizados diagramas da série BTroost cuja razão de área estava compreendida entre 040 e 080 O resumo das informações utilizadas para projeto pode ser encontrado na Tabela 5 Maiores detalhes referentes às características da embarcação e a determinação de sua resistência ao avanço podem ser encontrados no relatório de Métodos de Resistência ao Avanço Tabela 5 Informações para projeto de hélice da embarcação de passageiros Caso 2 Massa Específica da Água ρ 9981 kgm³ Diâmetro do Hélice D 17 m Calado da Embarcação H 26 m Boca B 955 m Resistência ao Avanço do Comboio RT 61449 N Volume de Carena 916 m³ Número de Hélices Nh 2 Comprimento na Linha Dágua LWL 55835 m Velocidade de Operação V 22224 kmh 12 nós Antes de estimar o coeficiente de esteira é necessário encontrar o coeficiente de bloco da embarcação que não foi fornecido no primeiro relatório Para encontrar o coeficiente de bloco Encontrado o coeficiente de bloco temos todos os dados necessários para estimar o coeficiente de esteira pela equação 2 Observe para este caso ω 0006 pois da equação 3 obtemos O valor de ω encontrado é então utilizado para estimar o coeficiente redutor da força propulsiva t Uma vez estimados os valores de ω e t utilizase a equação 10 para encontrar o Adotouse novamente a correção de empuxo devido ao sistema de propulsão bihélice A equação acima foi utilizada para obter os pontos da curva de que estão representados na Tabela 6 Os pontos obtidos foram utilizados para plotar a curva nos 14 diagramas da série BTroost e obter os dados necessário para projeto conforme descrito na Seção 123 Tabela 6 Dados para plot da curva Caso 2 0001 0100 0020 0200 0045 0300 0080 0400 0124 0500 0179 0600 0243 0700 0318 0800 Vamos analisar a cavitação no dorso das pás de um hélice da série BTroost 470 razão de 10 Para isso vamos encontrar e Agora encontrando e através das equações 18 e 19 Encontrando o valor de através da equação 20 Uma vez que temos que o ponto está abaixo da curva D2 logo o hélice em questão está dentro do limite de cavitação de 5 Os resultados obtidos para os outros hélices podem ser conferidos no Anexo II Da inspeção dos resultados obtemos as seguintes características para o modelo do hélice ideal Tabela 7 Propriedades do hélice ideal Caso 2 Série rpm BTroost 450 10 6172 06433 276 Assim o BHP necessário para propulsionar esta embarcação é de Desta forma escolheuse o motor 6EY17AW do fabricante Yanmar O motor apresenta potência de saída entre 374 e 837 kW e opera a 1450 RPM mais detalhes sobre o motor podem ser encontrados na Figura 6 Desta forma a embarcação precisará de um reversor cujo fator de redução é dado por 15 Figura 6 Especificações do motor 6EY17AW fabricante Yanmar 4 Estudo de Caso 3 Embarcação de Passageiros D 14 m Este estudo foi realizado para a mesma embarcação do Caso 2 os dados para projeto e as etapas são as mesmas entretanto adotouse um diâmetro de 14 m para o hélice O principal objetivo deste estudo é comparar resultados com o Caso 2 e verificar os impactos do diâmetro de um hélice em sua eficiência Uma vez que os dados são os mesmos do caso anterior pularemos direto para a etapa onde encontramos a função para a curva Pela equação 10 obtemos Os pontos obtidos pela equação acima para plot da curva pode ser conferido na Tabela 8 Tabela 8 Dados para plot da curva Caso 3 0001 0100 0029 0200 0067 0300 0117 0400 0183 0500 0264 0600 0359 0700 0469 0800 O estudo deste caso foi conduzido da mesma maneira que nos Casos 1 e 2 Todos os resultados podem ser conferidos no Anexo III Da análise dos resultados obtemos o seguinte modelo de hélice ideal Tabela 9 Propriedades do hélice ideal Caso 3 Série rpm BTroost 460 08 5624 04893 441 Assim o BHP necessário para propulsionar esta embarcação é de 16 O BHP requerido desta embarcação está dentro da faixa de potência do escolhido para o caso anterior logo o motor e fator de redução para este caso são os mesmos do caso anterior Considerações Finais Através deste trabalho foi possível compreender e estudar o projeto preliminar de propulsores a partir de séries sistemáticas tendo como parâmetros iniciais as características do casco de uma embarcação Ainda foi possível obter conhecimentos referentes ao fenômeno de cavitação e restrições que este impõe ao projeto de hélices Duas observações feitas durante os três casos analisados merecem destaque a primeira diz respeito a influência que a constante que multiplica na equação 10 exerce nos resultados que serão obtidos A Figura 7 ilustra o diagrama BTroost 480 e nele estão plotadas as curvas de obtidas através da equação 10 para os três casos estudados Por simples inspeção do gráfico é possível observar que curvas mais suaves possibilitam que maiores valores de rendimento sejam obtidos Ainda aumentam o valor obtido para o que diminui a rotação de operação do propulsor conforme pode ser observado na equação 8 e consequentemente também reduz os efeitos de cavitação De fato ao comparar o Caso 1 que apresenta o maior valor de constante e uma curva mais íngreme com o Caso 2 que apresenta a curva mais suave entre os três casos observase uma diferença de rendimento do hélice ideal acima de 30 Figura 7 Diagrama BTroost 480 e curvas de para os três casos estudados Esta primeira observação nos leva a uma conclusão importante maiores diâmetros de hélices reduzem o valor da constante da equação 10 ou seja suavizam a curva de e impactam positivamente no rendimento do propulsor Comparando os resultados obtidos 17 entre os Casos 1 e 2 observouse que a pequena diferença de 30 cm entre os dois diâmetros ocasionou um aumento de rendimento do propulsor de cerca de 5 A segunda observação importante é a de que uma maior área estendida das pás é responsável por diminuir o rendimento de um propulsor e também os efeitos de cavitação Nos resultados dos três casos que podem ser conferidos nos Anexos I II e III é possível observar que o rendimento cai conforme a razão de área estendida aumenta por outro lado mais geometrias são aprovadas no teste de cavitação excessiva Referências Padovezi C D Aplicação de Resultados de Escala Real no Projeto de Hélices de Embarcações Fluviais 1997 101 f Dissertação Escola Politécnica Universidade de São Paulo São Paulo 1997 18 Anexo I Resultados para o Estudo de Caso 1 Tabela 10 Resultados para Série BTroost 440 Caso 1 rpm Cavitação 04 268 0150 444 0177 0255 0124 0053 REP 06 291 0184 361 0280 0384 0172 0108 REP 08 283 0213 313 0391 0510 0205 0186 REP 10 266 0238 279 0516 0638 0231 0284 REP 12 247 0260 256 0647 0757 0251 0396 REP 14 230 0277 240 0780 0859 0266 0514 REP Tabela 11 Resultados para Série BTroost 445 Caso 1 rpm Cavitação 04 265 0149 446 0156 0252 0123 0033 REP 06 290 0185 361 0249 0384 0172 0077 REP 08 281 0214 311 0351 0516 0206 0145 REP 10 265 0241 277 0468 0651 0234 0234 REP 12 246 0263 253 0591 0777 0254 0337 REP 14 229 0282 236 0718 0890 0270 0448 REP Tabela 12 Resultados para Série BTroost 450 Caso 1 rpm Cavitação 04 261 0148 449 0138 0249 0121 0017 REP 06 288 0185 360 0224 0385 0172 0052 REP 08 279 0215 309 0319 0521 0208 0112 REP 10 264 0243 274 0429 0663 0236 0193 REP 12 246 0267 249 0547 0799 0258 0289 REP 14 229 0287 232 0668 0921 0274 0394 REP Tabela 13 Resultados para Série BTroost 455 Caso 1 rpm Cavitação 04 255 0147 453 0124 0245 0119 0004 REP 06 286 0185 361 0204 0385 0172 0032 REP 08 278 0216 308 0293 0526 0209 0084 REP 10 263 0245 271 0397 0675 0238 0159 REP 12 246 0270 246 0509 0818 0260 0248 REP 14 230 0292 228 0626 0949 0278 0349 REP Tabela 14 Resultados para Série BTroost 460 Caso 1 rpm Cavitação 04 248 0146 457 0111 0240 0117 0006 AP 06 283 0185 361 0187 0385 0172 0015 REP 08 276 0217 307 0271 0531 0210 0061 REP 10 262 0247 269 0370 0686 0240 0130 REP 12 246 0273 243 0477 0837 0263 0214 REP 14 231 0296 225 0591 0976 0281 0310 REP 19 Tabela 15 Resultados para Série BTroost 465 Caso 1 rpm Cavitação 04 241 0144 462 0101 0235 0115 0014 AP 06 280 0184 361 0172 0383 0172 0000 AP 08 275 0218 306 0251 0533 0210 0041 REP 10 261 0249 268 0345 0694 0241 0104 REP 12 246 0276 241 0449 0852 0265 0183 REP 14 232 0299 222 0558 1000 0284 0275 REP Tabela 16 Resultados para Série BTroost 470 Caso 1 rpm Cavitação 04 233 0143 467 0091 0230 0112 0021 AP 06 277 0184 362 0159 0382 0171 0012 AP 08 273 0218 305 0235 0536 0211 0024 REP 10 260 0250 267 0323 0700 0242 0081 REP 12 247 0279 239 0425 0869 0267 0157 REP 14 233 0303 220 0531 1024 0287 0245 REP Tabela 17 Resultados para Série BTroost 475 Caso 1 rpm Cavitação 04 224 0141 471 0084 0226 0110 0026 AP 06 275 0184 362 0149 0383 0171 0023 AP 08 273 0219 303 0221 0542 0212 0009 REP 10 261 0253 264 0309 0716 0245 0064 REP 12 248 0282 236 0405 0888 0270 0135 REP 14 235 0307 217 0509 1051 0290 0219 REP Tabela 18 Resultados para Série BTroost 480 Caso 1 rpm Cavitação 04 214 0140 477 0076 0220 0107 0030 AP 06 271 0184 362 0139 0381 0171 0032 AP 08 271 0220 303 0209 0545 0213 0004 AP 10 262 0254 262 0292 0724 0246 0046 REP 12 249 0284 234 0386 0904 0272 0114 REP 14 236 0310 215 0487 1073 0292 0195 REP 20 Anexo II Resultados para o Estudo de Caso 2 Tabela 19 Resultados para Série BTroost 440 Caso 2 rpm Cavitação 04 4203 03415 520 0076 0206 0099 0023 AP 06 5582 04528 392 0138 0356 0163 0025 AP 08 6108 05535 321 0213 0522 0208 0005 REP 10 6199 06431 276 0297 0690 0240 0057 REP 12 6110 07225 246 0389 0854 0265 0124 REP 14 6015 07918 224 0486 1006 0284 0202 REP Tabela 20 Resultados para Série BTroost 445 Caso 2 rpm Cavitação 04 4119 03374 527 0066 0202 0097 0030 AP 06 5584 04500 395 0122 0352 0162 0040 AP 08 6110 05521 322 0189 0520 0207 0019 AP 10 6183 06430 276 0264 0690 0240 0024 REP 12 6076 07234 246 0346 0856 0266 0081 REP 14 5973 07951 224 0435 1013 0285 0150 REP Tabela 21 Resultados para Série BTroost 450 Caso 2 rpm Cavitação 04 4002 03336 533 0058 0197 0094 0036 AP 06 5572 04482 397 0109 0349 0161 0052 AP 08 6109 05515 322 0169 0519 0207 0038 AP 10 6172 06433 276 0238 0691 0241 0003 AP 12 6055 07254 245 0313 0860 0266 0047 REP 14 5944 07986 223 0395 1021 0286 0109 REP Tabela 22 Resultados para Série BTroost 455 Caso 2 rpm Cavitação 04 3853 03292 540 0052 0192 0091 0039 AP 06 5531 04456 399 0098 0346 0160 0062 AP 08 6094 05504 323 0153 0517 0207 0053 AP 10 6156 06434 276 0216 0691 0241 0024 AP 12 6034 07268 245 0286 0863 0267 0019 REP 14 5915 08017 222 0361 1028 0287 0074 REP Tabela 23 Resultados para Série BTroost 460 Caso 2 rpm Cavitação 04 3674 03253 546 0046 0188 0088 0042 AP 06 5469 04429 401 0088 0342 0158 0070 AP 08 6065 05489 324 0140 0514 0206 0066 AP 10 6134 06435 276 0198 0691 0241 0042 AP 12 6016 07281 244 0263 0866 0267 0004 AP 14 5894 08046 221 0333 1035 0288 0046 REP 21 Tabela 24 Resultados para Série BTroost 465 Caso 2 rpm Cavitação 04 3461 03198 556 0041 0181 0084 0043 AP 06 5370 04394 404 0080 0336 0156 0076 AP 08 6017 05467 325 0128 0510 0205 0077 AP 10 6102 06424 277 0183 0689 0240 0058 AP 12 5988 07280 244 0243 0866 0267 0024 AP 14 5866 08060 220 0309 1038 0288 0021 REP Tabela 25 Resultados para Série BTroost 470 Caso 2 rpm Cavitação 04 3248 03148 565 0037 0176 0081 0043 AP 06 5266 04367 407 0074 0332 0155 0081 AP 08 5968 05453 326 0118 0508 0205 0086 AP 10 6077 06422 277 0169 0689 0240 0071 AP 12 5973 07289 244 0226 0867 0267 0041 AP 14 5853 08085 220 0288 1043 0289 0000 AP Tabela 26 Resultados para Série BTroost 475 Caso 2 rpm Cavitação 04 3034 03109 572 0034 0172 0078 0044 AP 06 5158 04350 409 0068 0330 0154 0086 AP 08 5927 05454 326 0111 0508 0205 0094 AP 10 6066 06437 276 0159 0692 0241 0082 AP 12 5974 07316 243 0212 0873 0268 0056 AP 14 5857 08127 219 0272 1053 0290 0018 AP Tabela 27 Resultados para Série BTroost 480 Caso 2 rpm Cavitação 04 2803 03056 582 0031 0166 0074 0043 AP 06 5016 04322 411 0063 0326 0153 0089 AP 08 5860 05440 327 0103 0505 0204 0101 AP 10 6034 06434 276 0149 0691 0241 0092 AP 12 5961 07324 243 0199 0875 0268 0069 AP 14 5852 08149 218 0256 1058 0290 0035 AP 22 Anexo III Resultados para o Estudo de Caso 3 Tabela 28 Resultados para Série BTroost 440 Caso 3 rpm Cavitação 04 4223 03087 699 0092 0169 0076 0016 REP 06 5343 04047 533 0164 0287 0138 0026 REP 08 5687 04906 440 0250 0415 0181 0069 REP 10 5671 05659 381 0346 0544 0213 0133 REP 12 5515 06310 342 0448 0667 0236 0211 REP 14 5366 06873 314 0556 0780 0255 0301 REP Tabela 29 Resultados para Série BTroost 445 Caso 3 rpm Cavitação 04 4145 03054 707 0080 0166 0074 0007 REP 06 5339 04031 535 0145 0285 0137 0008 REP 08 5678 04901 440 0222 0415 0181 0041 REP 10 5648 05668 381 0308 0546 0213 0095 REP 12 5481 06335 341 0401 0672 0237 0164 REP 14 5328 06920 312 0500 0790 0256 0244 REP Tabela 30 Resultados para Série BTroost 450 Caso 3 rpm Cavitação 04 4042 03020 715 0071 0162 0071 0000 AP 06 5322 04016 537 0130 0283 0136 0007 AP 08 5667 04900 440 0200 0415 0181 0019 REP 10 5631 05682 380 0279 0548 0214 0065 REP 12 5459 06365 339 0364 0677 0238 0126 REP 14 5300 06968 310 0456 0800 0258 0198 REP Tabela 31 Resultados para Série BTroost 455 Caso 3 rpm Cavitação 04 3908 02985 723 0063 0159 0068 0006 AP 06 5282 03995 540 0117 0280 0135 0018 AP 08 5650 04897 441 0181 0414 0181 0001 REP 10 5613 05692 379 0254 0550 0214 0040 REP 12 5439 06389 338 0333 0682 0239 0094 REP 14 5278 07010 308 0419 0808 0259 0160 REP Tabela 32 Resultados para Série BTroost 460 Caso 3 rpm Cavitação 04 3750 02947 732 0056 0155 0066 0009 AP 06 5228 03978 542 0106 0278 0134 0028 AP 08 5624 04893 441 0166 0413 0181 0015 AP 10 5592 05700 379 0234 0552 0214 0019 REP 12 5422 06411 337 0307 0686 0240 0068 REP 14 5260 07049 306 0388 0817 0260 0128 REP 23 Tabela 33 Resultados para Série BTroost 465 Caso 3 rpm Cavitação 04 3560 02903 743 0050 0150 0062 0012 AP 06 5148 03951 546 0097 0274 0132 0036 AP 08 5581 04879 442 0152 0411 0180 0028 AP 10 5565 05698 379 0215 0551 0214 0001 REP 12 5400 06423 336 0285 0689 0240 0045 REP 14 5242 07074 305 0361 0822 0261 0100 REP Tabela 34 Resultados para Série BTroost 470 Caso 3 rpm Cavitação 04 3361 02860 755 0045 0146 0059 0013 AP 06 5058 03929 549 0089 0271 0131 0043 AP 08 5543 04872 443 0141 0410 0180 0039 AP 10 5543 05704 378 0200 0552 0214 0014 AP 12 5388 06441 335 0266 0692 0241 0025 REP 14 5236 07107 304 0338 0829 0262 0076 REP Tabela 35 Resultados para Série BTroost 475 Caso 3 rpm Cavitação 04 3164 02826 764 0041 0142 0056 0014 AP 06 4972 03917 551 0082 0269 0131 0048 AP 08 5513 04877 442 0132 0411 0180 0048 AP 10 5538 05723 377 0188 0556 0215 0027 AP 12 5394 06474 333 0250 0699 0242 0008 REP 14 5246 07156 302 0319 0839 0263 0056 REP Tabela 36 Resultados para Série BTroost 480 Caso 3 rpm Cavitação 04 2944 02780 776 0038 0138 0052 0015 AP 06 4856 03894 554 0076 0266 0129 0053 AP 08 5460 04868 443 0123 0409 0179 0056 AP 10 5517 05726 377 0177 0556 0215 0039 AP 12 5389 06489 333 0236 0702 0242 0007 AP 14 5247 07185 300 0301 0845 0264 0037 REP 24 Anexo IV Pontos de Entrada para a Curva D2 0164 0180 0200 0220 0240 0260 0280 0076 0086 0096 0105 0116 0127 0138 0300 0320 0340 0360 0380 0400 0420 0147 0154 0160 0166 0172 0178 0182 0440 0460 0480 0500 0520 0540 0560 0186 0190 0193 0197 0200 0206 0211 0580 0600 0620 0640 0660 0680 0700 0217 0222 0226 0230 0234 0238 0242 0720 0740 0760 0780 0800 0820 0840 0246 0249 0253 0257 0260 0263 0266 0860 0880 0900 0920 0940 0960 0980 0269 0271 0274 0276 0278 0281 0283 1000 1100 0285 0295