• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Cursos Gerais ·

Econometria

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Prova Series Temporais

5

Prova Series Temporais

Econometria

UFRJ

Lista1seriestemporaisgabarito

8

Lista1seriestemporaisgabarito

Econometria

UFRJ

Pedro a Morettin - Análise de Séries Temporais-edgard Blucher 2006

1

Pedro a Morettin - Análise de Séries Temporais-edgard Blucher 2006

Econometria

UFRJ

Pedro a Morettin - Análise de Séries Temporais-edgard Blucher 2006

1

Pedro a Morettin - Análise de Séries Temporais-edgard Blucher 2006

Econometria

UFRJ

Prova Series Temporais

5

Prova Series Temporais

Econometria

UFRJ

Questoes Anpec Econometria - Analise de Estimadores MQO e Regressao Linear

3

Questoes Anpec Econometria - Analise de Estimadores MQO e Regressao Linear

Econometria

UFRJ

Trabalho Econometria no R

15

Trabalho Econometria no R

Econometria

UFRJ

Econometria-I-Prova-Resolucao-IEUFRJ-2025

1

Econometria-I-Prova-Resolucao-IEUFRJ-2025

Econometria

UFRJ

Interpretação de Regressão Matricial - Mqo

17

Interpretação de Regressão Matricial - Mqo

Econometria

UFRJ

Trabalho de Econometria

10

Trabalho de Econometria

Econometria

UFRJ

Texto de pré-visualização

(g) MA(3) y_t = e_t - 0.7e_{t-1} - 0.2e_{t-2} - 0.3e_{t-3}, \ e_t \sim R.B(0,\sigma^2) \hat{y}_{t}(h=1) = -0.7\hat{e}_t - 0.2\hat{e}_{t-1} - 0.5\hat{e}_{t-2}, \ h=1 \ \ \ \ \hat{e}_t(h) = \left\{ \begin{array}{ll} -0.7\hat{e}_t -0.3\hat{e}_{t-1}, & h=2\\ -0.3\hat{e}_{t-1}, & h=3\\ 0, & h>0 \end{array} \right. (b) ARIMA(0,2,1) \Delta^2y_t = e_t - \Theta e_{t-1}, \ e_t \sim R.B(0,\sigma^2) \ (1-B)(1-B)y_t = e_t + \Theta e_{t-1} \ (1-B)(y_u-y_{t-1}) = e_{t} - \Theta e_{t-1} \ (1-B)y_t-y_{t-1} = e_{t} - \Theta e_{t} \ y_e = 2y_{e-1} - y_{e-1} + e_t - \Theta e_{t-1} \hat{y}_{t}(h=1) = 2y_{u-1} - y_{u-1} - \Theta \hat{e}_m, \ h=1 \ \ \ \ \ \hat{y}_{t}(h=2) = 2y_u(1) - y_u, \ h=2 {(y_t(h-1) - y_t(h-1), & h>2} (.) SARIMA (1,0,0) (1,0,0)_{12} \Pi(B^{12})\Phi(B)y_t = e_t, \ e_t \sim R.B(1,0,\sigma^2) (1-\Pi B^{12})(1-\Phi B)y_t = e_t 4ª LISTA DE EXERCICIOS - ANALISE DE SERIES TEMPORAIS 02/02/01 \ 1) (a) AR(1) y_t = \phi y_{t-1} + e_t, \ e_t \sim R.B(0, \sigma^2) \hat{y}_t(h) = \left\{ \begin{array}{ll} \phi y_t, & h=1\\ \phi \hat{y}_t(h-1), & h>1 \end{array} \right. (c) . AM(1) y_t = e_t - \Theta e_{t-1}, \ e_t \sim R.B(0,\sigma^2) \(g_t = \left\{ \begin{array}{ll} -\Theta \hat{e}_m, & h=1\\ \ 0, & h>1 \end{array} \right. (c) ARMA(2,1) \ (1-\phi B-\phi B^2)y_u = (1-\Theta B)e_t, \ e_t \sim R(B(0,\sigma^2) \ \ y_t = \phi_1y_t + \phi_2 u_{-1} + \Theta y_{t-2} + y_e + \Theta e_{t-1} \ \hat{y}_u(h=1) = \hat{}\phi_1 y_{u-1} + \phi_2 y_{u-2} - \Theta \hat{y}_u, \quad \ \phi_2 y_{u-1) + \phi_1 y.u + \Theta y, h=2 \ \ \ \ \ \ \ \phi_1\hat{y}_t(h-1) + \phi_2 y_u(h-2) \hat{y}, h>2 (d) ARIMA (0,1,0) \Delta y_t = e_t, \ e_t \sim R.B(0,\sigma^2) \ \ y_t - y_{t-1} = e_t \Rightarrow y_t = y_{l_0} + e_t \ \hat{y}_t(h) = \left\{ \begin{array}{ll} y_m, & h=1\\ \ \hat{y}_m = (h)>1, & t`1 \end{array} \right. (e) ARIMA(0,1,1)\ \Delta y_t = e_t - \Theta e_{t-1}, \ e_t \sim R.B(0,\sigma^2) y_t - y_{t-1}e_t = e_t - \Theta e_t\ \ \hat{y}_u(h) = \left\{ \begin{array}{ll} y_m - Se_m= h=1\\ \ \hat{y}_m(h-1), & h>1 \end{array} \right. (f) AR(3) \ y_t = b_0 y_{u-e} + b_c y_{u-1} - \Phi y_{u-2} - ft(uint u-3) + e_t, \ e_t \sim R.B(0,\sigma^2) \ \ \hat{u})h=\left\{ \begin{array}{ll} \Phi y.u - \phi_1 y_{u-1} - \phi_2 y_{u-2}\\ \Phi. \hat{y}_{u-2} + \phi y_u-3\\ \ \phi y_u(h-2) + \phi y_{a-1} \end{array}\right. (1 - \Theta B^{12})(y_{t} - \phi y_{t-1}) = \varepsilon_{t} y_t - \phi y_{t-1} = \Phi y_{t-12} + \Phi \Phi y_{t-13} = \varepsilon_{t+} y_t = \phi y_{t-1} + \Phi y_{t-12} - \Phi \Phi y_{t-13} = \varepsilon_{t+} \hat{y}_t(h) = \left\{ \begin{array}{ll} \Phi y_{t-h+1} + \Phi \hat{y}_{t-h+1} - \Phi \Phi y_{t-k+1}, & h=1\\ \Phi y_{t-h-1} + \Phi \hat{y}_{t-h-12} - \Phi \Phi y_{t-k+1}, & h=2,\ldots,12\\ \Phi y_{t-(h-k-1)} + \Phi \hat{y}_{t-(h-12)} - \Phi \Phi \hat{y}_{t-(h-13)}, & h=13 \Phi \hat{y}_{t-(h-12)}, & h > 13 \end{array} \right. (3) SARIMA (0,1,1) x (0,0,1)_{12} \Delta_{12} y_{t} = \Theta(B^{12}) \Theta(B) \varepsilon_t, \; z_t \sim RB(0,\sigma^2) y_t - y_{t-12} = \Theta(B^{12}) (z_t - \Theta z_{t-1}) y_t - y_{t-12} = \Theta \varepsilon_{t} - \Theta \varepsilon_{t-1} - \Theta \varepsilon_{t-12} + \Theta \Theta \varepsilon_{t-13} y_{t-12} - \Theta \varepsilon_{t-24} + \Theta \Theta \varepsilon_{t+12} - \Theta \varepsilon_{t-12} + \Theta \Theta \varepsilon_{t+13} \hat{y}_t(h) = \left\{ \begin{array}{ll} \varepsilon_{t-h-12} - \hat{\varepsilon}_t - \hat{\varepsilon}_{t-h-1} + \Theta \hat{\varepsilon}_{t-h-12}, & h=1 \hat{\varepsilon}_{t-h-12} - \hat{\varepsilon}_{t-h-12} + \Theta \hat{\varepsilon}_{t-h-12}, & h=2,\ldots,12\\ \hat{y}_{t-(h-12)} + \Phi \hat{\varepsilon}_t, & h=13 \hat{y}_{t-(h-12)}, & h > 13 \end{array} \right. 2) (a) \hat{\phi} = 0,2674 \;, \hat{C}^2 = 0,3053 \hat{y}_t(h) = \left\{ \begin{array}{ll} 0,2674 y_{t}, & h=1\\ 0,2674 \hat{y}_{t}'(1), & h=2 \end{array} \right. O erro de previsão é dado por \tilde{e}_n (h) = y_{t+n} - \hat{y}_{t}(h) \sim N(0, V(h)), \; \varepsilon_t \sim N(0, \sigma^2). => IC( \hat{y}_{n+h}; \alpha=0) = \hat{y}_t(1) - j]=(-\sqrt{\hat{V}(h)}; \hat{y}'(x) \hat{\varepsilon}_t = \hat{\Psi}_{j=0} \Psi'_j \hat{C'}^2. Para um modelo AR(1), temos y_t = \Phi(B)\varepsilon_{t} = (\varphi_0 + \varphi B + \varphi_2 B^2 + \ldots ) \varepsilon_{t} = (1 + \phi B + \phi^2 B^2 + \ldots ) \varepsilon_t. Logo, para h = 1, \hat{y}_t(1) = 0,2674 x y_{t} = 0,3209 \hat{V}(1) = \hat{\varphi}_1^2 \hat{C}^2 = 1 x 0,3053 = 0,3053 IC(y_{0; 0,95}) = (0,3209 - 1,36 x \sqrt{0,3053}; 0,3209 + 1,36 x \sqrt{0,3053}) = (-1,5440; 2,1858). Para h = 2 \hat{y}_t(2) = 0,2674 x 0,3209 = 0,3058. \hat{V}(2) = \hat{\Psi}_0 \hat{\varepsilon}t^2 \hat{\Psi'}_t \varepsilon_t^2 = 0,3053 + 0,2674 \cdot 0,3053 = 0,8059. IC(y_{0; 0,95}) = (-1,5447; 2,1905). (a) \hat{\theta} = -0.4578, \; \hat{C}^2 = 0.3559 \hat{y}_t (h) = \left\{ \begin{array}{ll} 0.0478 \hat{\varepsilon}_t, & h=1\\ 0, & h=2 \end{array}\right. Para um modelo MA(1), temos y_t = \varphi(B)\varepsilon_t = (\varphi_0 + \varphi_1 B + \varphi_2 B^2 + \ldots ) \varepsilon_t = (1 - \theta B) \varepsilon_t. Logo, para h=1, \hat{y}_t(1) = 0.0478 x 1,05 = 0,0502 \hat{V}(1) = \hat{\varphi}_1^2 \hat{C}^2 = \hat{\varphi}_1^2 x 0.3559 = 0.3559. IC(y_{0; 0,95}) = (0,0502 - 1,96\sqrt{0,3559}; 0,0502 + 1,96\sqrt{0,3559}) = (-1,79631; 1,89635). Para h = 2 \hat{y}_t (2) = 0 \hat{V}(2) = \hat{\varphi}_2 \hat{V}^2 + \hat{\varphi}_1 \hat{V}^2 \hat{\varepsilon}_t^2 = 0.3559 + (-0,4579)^2 x 0.3559 = 1,0553. IC(y_{0; 0,95}) = (-1,90491; 2,00449). 3) (a) Sabemos que mu|D_{t+1} ~ N(at, R_t), em que at = m_{t-1} e R_t = C_{t-1} + V_t e y_t|D_{t+1} ~ N(ft, Qt), em que ft = at e m_{t+1} e Qt = R_t + V_t Entao, temos lin(y_t - yt|D_{t+1}) = E_col(mu_t|u_t, y_t, D_{t+1}) = varp(y_t|D_{t+1}) = Var(yt|D_{t+1}) + R_t Logo, (y_t, y_t')|D_{t+1} tem dist. normal bivariada da forma ( y \mu )|D_{t+1} ~ N \begin({align}) \begin({array{{c}}} \mu_t \mu_t \end{{array}}) \begin{{array}}{{c}} O_t - R_t R_t - R_t \end{{array}}\\ \end{{align}} \end{{align}} (b) PROPRIEDADES DA DIST. NORMAL - X_n N(ma, V) Se X = (X_1 \X_2) ~ N \begin{{matrix}} \begin{{matrix}} \mu_1 \mu_2 \end{{matrix}} \end{{matrix}}, V = \begin{{bmatrix}} V_{11} V_{12} \\ V_{22} V_{21} \end{{bmatrix}} Entao, X_1|X_2 ~ N(ma1(x1), va1(x2)) em que ma1(x2) = ma_1 + V_{12}V^{-1}_{22}(X_2 - ma_2) e va11(x2) = V_{11} - V_{12}V_{12}^{-1}V_{21} Aplicando na ND, temos mu_t|D_t ~ N(mt, Ct), com mt = mt-1+RtQt^{-1} (yt-mt-1) e \begin{{align}} O_t - R_t Rt - At^t Qt. \end{{align}} (c) C_t = R_t - A_t^2 Q_{t( R_t - R_t^2/ Q_t Q_{t R_t - R_t^2 R_{t+V/t}} - car (1-R_k6) + // tam. Nas 4) F = 1, G_t = A_t, V_t = V , w_{t-1} = 0 => qpt = mu_t+v_t =/N(0,V) mu_t = mu_{t-1} = mu_{t} mu_t|D_{t} => qpt\N(p_t, v_t) com mtD_t\N(mi, c_o), logPro = poka 5) y_t = mu_t+ vt, u(t)\N(0,Vt) mu_t = mu_{t-1}+ w_t, w(t)\N(0,W_t) o Tempo ta-1, mu_tD_{t+1}\N(at, R_t) 2 yt/ sprene^N(mu1 +Ns, Vt) (a) Pelo Teorema de Bayes, p(mu_t |Dt)\ap(mu_t|mu_t,Dt) p(mu_{t+1} D_{t-1}) proa/ expo\ap exp( -d\|2Vt (ys-mu_t-m^2) L assel exp{-1 \|2VRt[Re_tf] t(qt\eq_i (mu{t+1'})_4(mu_t+v_irn_2) + V\uQ_1^p-ar mu+Qu(ay_{t+1} + V\pointerin{b}] pro_enin_alf(+ B2-t\ea) \qada_b\begin({cases}) \end{{cases}) => Mu_t|Dt ~ N(m_1,Ct), em que MT = pressure etc/mu_t{sub+} \mu+ 2 \muln{+v/0(n-0.7\\'&d,0vj[pt(b..., sino] = ...v+0 )\pron \sigma \sum c\'are-Dvri&map,\;b[\text{'0})',\le\mu p,\\th] &dable(n,\'leam) < 0> Saul(spons)@\fracparv[\lim, tol\ perplex(sub+, ensec^7) ]&\sumk er(-MU&vu_q(p_t -\yt_{-L+U}) OC *t-1]Mi~cti\nae+= en_l=2_n}). ar_plT(*p'erinis, cons)\big& b,s\mu = ...> " \ul,aratt\ex\inspect.un) = troca-to [ef-q-s] Qu_boardkitN\nv{m?0} ( ( ) Sabemos que μ_t | D_{t-1} ~ N(a_t, R_t) e y_t | D_{t-1} ~ N (f_t, Q_t) , μ_t + N = m_{t-1} + N , pois E(y_t | D_{t-1}) = E( E(y_t | μ_t) | D_{t-1} ) = E( μ_t + w | D_{t-1} ) = E( μ_t | D_{t-1} ) + w = a_t + N, e Q_t = R_t + V_t, pois Var(y_t | D_{t-1}) = Var( E(y_t | μ_t ) | D_{t-1} ) + E( Var( y_t | μ_t ) | D_{t-1} ) = Var( μ_t + w | D_{t-1} ) + E( V_t | D_{t-1} ) = Var( μ_t | D_{t-1} ) + V_t = R_t + V_t Cov( y_t , μ_t | D_{t-1} ) = Cov( μ_t + w, μ_t | D_{t-1}) = Var( μ_t | D_{t-1} ) = R_t Assim ; \begin{pmatrix} y_t \\ μ_t \end{pmatrix} \bigg| D_{t-1} ~ N \left[\begin{pmatrix} m_{t-1} + N \\ m_{t-1} \end{pmatrix} , \begin{pmatrix} Q_t & R_t \\ R_t & R_t \end{pmatrix}\right]. assim, \begin{pmatrix} m_t = m_{t-1} + R_t Q_t^{-1} ( y_t - ( m_{t-1}+N ) ) = m_{t-1} + A_t ( y_t - a_t - N ) C_t = R_t - R_tQ_t^{-1} R_t = R_t - A_t^2 R_t, utilizando as propriedades da distribuiçao normal.

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Prova Series Temporais

5

Prova Series Temporais

Econometria

UFRJ

Lista1seriestemporaisgabarito

8

Lista1seriestemporaisgabarito

Econometria

UFRJ

Pedro a Morettin - Análise de Séries Temporais-edgard Blucher 2006

1

Pedro a Morettin - Análise de Séries Temporais-edgard Blucher 2006

Econometria

UFRJ

Pedro a Morettin - Análise de Séries Temporais-edgard Blucher 2006

1

Pedro a Morettin - Análise de Séries Temporais-edgard Blucher 2006

Econometria

UFRJ

Prova Series Temporais

5

Prova Series Temporais

Econometria

UFRJ

Questoes Anpec Econometria - Analise de Estimadores MQO e Regressao Linear

3

Questoes Anpec Econometria - Analise de Estimadores MQO e Regressao Linear

Econometria

UFRJ

Trabalho Econometria no R

15

Trabalho Econometria no R

Econometria

UFRJ

Econometria-I-Prova-Resolucao-IEUFRJ-2025

1

Econometria-I-Prova-Resolucao-IEUFRJ-2025

Econometria

UFRJ

Interpretação de Regressão Matricial - Mqo

17

Interpretação de Regressão Matricial - Mqo

Econometria

UFRJ

Trabalho de Econometria

10

Trabalho de Econometria

Econometria

UFRJ

Texto de pré-visualização

(g) MA(3) y_t = e_t - 0.7e_{t-1} - 0.2e_{t-2} - 0.3e_{t-3}, \ e_t \sim R.B(0,\sigma^2) \hat{y}_{t}(h=1) = -0.7\hat{e}_t - 0.2\hat{e}_{t-1} - 0.5\hat{e}_{t-2}, \ h=1 \ \ \ \ \hat{e}_t(h) = \left\{ \begin{array}{ll} -0.7\hat{e}_t -0.3\hat{e}_{t-1}, & h=2\\ -0.3\hat{e}_{t-1}, & h=3\\ 0, & h>0 \end{array} \right. (b) ARIMA(0,2,1) \Delta^2y_t = e_t - \Theta e_{t-1}, \ e_t \sim R.B(0,\sigma^2) \ (1-B)(1-B)y_t = e_t + \Theta e_{t-1} \ (1-B)(y_u-y_{t-1}) = e_{t} - \Theta e_{t-1} \ (1-B)y_t-y_{t-1} = e_{t} - \Theta e_{t} \ y_e = 2y_{e-1} - y_{e-1} + e_t - \Theta e_{t-1} \hat{y}_{t}(h=1) = 2y_{u-1} - y_{u-1} - \Theta \hat{e}_m, \ h=1 \ \ \ \ \ \hat{y}_{t}(h=2) = 2y_u(1) - y_u, \ h=2 {(y_t(h-1) - y_t(h-1), & h>2} (.) SARIMA (1,0,0) (1,0,0)_{12} \Pi(B^{12})\Phi(B)y_t = e_t, \ e_t \sim R.B(1,0,\sigma^2) (1-\Pi B^{12})(1-\Phi B)y_t = e_t 4ª LISTA DE EXERCICIOS - ANALISE DE SERIES TEMPORAIS 02/02/01 \ 1) (a) AR(1) y_t = \phi y_{t-1} + e_t, \ e_t \sim R.B(0, \sigma^2) \hat{y}_t(h) = \left\{ \begin{array}{ll} \phi y_t, & h=1\\ \phi \hat{y}_t(h-1), & h>1 \end{array} \right. (c) . AM(1) y_t = e_t - \Theta e_{t-1}, \ e_t \sim R.B(0,\sigma^2) \(g_t = \left\{ \begin{array}{ll} -\Theta \hat{e}_m, & h=1\\ \ 0, & h>1 \end{array} \right. (c) ARMA(2,1) \ (1-\phi B-\phi B^2)y_u = (1-\Theta B)e_t, \ e_t \sim R(B(0,\sigma^2) \ \ y_t = \phi_1y_t + \phi_2 u_{-1} + \Theta y_{t-2} + y_e + \Theta e_{t-1} \ \hat{y}_u(h=1) = \hat{}\phi_1 y_{u-1} + \phi_2 y_{u-2} - \Theta \hat{y}_u, \quad \ \phi_2 y_{u-1) + \phi_1 y.u + \Theta y, h=2 \ \ \ \ \ \ \ \phi_1\hat{y}_t(h-1) + \phi_2 y_u(h-2) \hat{y}, h>2 (d) ARIMA (0,1,0) \Delta y_t = e_t, \ e_t \sim R.B(0,\sigma^2) \ \ y_t - y_{t-1} = e_t \Rightarrow y_t = y_{l_0} + e_t \ \hat{y}_t(h) = \left\{ \begin{array}{ll} y_m, & h=1\\ \ \hat{y}_m = (h)>1, & t`1 \end{array} \right. (e) ARIMA(0,1,1)\ \Delta y_t = e_t - \Theta e_{t-1}, \ e_t \sim R.B(0,\sigma^2) y_t - y_{t-1}e_t = e_t - \Theta e_t\ \ \hat{y}_u(h) = \left\{ \begin{array}{ll} y_m - Se_m= h=1\\ \ \hat{y}_m(h-1), & h>1 \end{array} \right. (f) AR(3) \ y_t = b_0 y_{u-e} + b_c y_{u-1} - \Phi y_{u-2} - ft(uint u-3) + e_t, \ e_t \sim R.B(0,\sigma^2) \ \ \hat{u})h=\left\{ \begin{array}{ll} \Phi y.u - \phi_1 y_{u-1} - \phi_2 y_{u-2}\\ \Phi. \hat{y}_{u-2} + \phi y_u-3\\ \ \phi y_u(h-2) + \phi y_{a-1} \end{array}\right. (1 - \Theta B^{12})(y_{t} - \phi y_{t-1}) = \varepsilon_{t} y_t - \phi y_{t-1} = \Phi y_{t-12} + \Phi \Phi y_{t-13} = \varepsilon_{t+} y_t = \phi y_{t-1} + \Phi y_{t-12} - \Phi \Phi y_{t-13} = \varepsilon_{t+} \hat{y}_t(h) = \left\{ \begin{array}{ll} \Phi y_{t-h+1} + \Phi \hat{y}_{t-h+1} - \Phi \Phi y_{t-k+1}, & h=1\\ \Phi y_{t-h-1} + \Phi \hat{y}_{t-h-12} - \Phi \Phi y_{t-k+1}, & h=2,\ldots,12\\ \Phi y_{t-(h-k-1)} + \Phi \hat{y}_{t-(h-12)} - \Phi \Phi \hat{y}_{t-(h-13)}, & h=13 \Phi \hat{y}_{t-(h-12)}, & h > 13 \end{array} \right. (3) SARIMA (0,1,1) x (0,0,1)_{12} \Delta_{12} y_{t} = \Theta(B^{12}) \Theta(B) \varepsilon_t, \; z_t \sim RB(0,\sigma^2) y_t - y_{t-12} = \Theta(B^{12}) (z_t - \Theta z_{t-1}) y_t - y_{t-12} = \Theta \varepsilon_{t} - \Theta \varepsilon_{t-1} - \Theta \varepsilon_{t-12} + \Theta \Theta \varepsilon_{t-13} y_{t-12} - \Theta \varepsilon_{t-24} + \Theta \Theta \varepsilon_{t+12} - \Theta \varepsilon_{t-12} + \Theta \Theta \varepsilon_{t+13} \hat{y}_t(h) = \left\{ \begin{array}{ll} \varepsilon_{t-h-12} - \hat{\varepsilon}_t - \hat{\varepsilon}_{t-h-1} + \Theta \hat{\varepsilon}_{t-h-12}, & h=1 \hat{\varepsilon}_{t-h-12} - \hat{\varepsilon}_{t-h-12} + \Theta \hat{\varepsilon}_{t-h-12}, & h=2,\ldots,12\\ \hat{y}_{t-(h-12)} + \Phi \hat{\varepsilon}_t, & h=13 \hat{y}_{t-(h-12)}, & h > 13 \end{array} \right. 2) (a) \hat{\phi} = 0,2674 \;, \hat{C}^2 = 0,3053 \hat{y}_t(h) = \left\{ \begin{array}{ll} 0,2674 y_{t}, & h=1\\ 0,2674 \hat{y}_{t}'(1), & h=2 \end{array} \right. O erro de previsão é dado por \tilde{e}_n (h) = y_{t+n} - \hat{y}_{t}(h) \sim N(0, V(h)), \; \varepsilon_t \sim N(0, \sigma^2). => IC( \hat{y}_{n+h}; \alpha=0) = \hat{y}_t(1) - j]=(-\sqrt{\hat{V}(h)}; \hat{y}'(x) \hat{\varepsilon}_t = \hat{\Psi}_{j=0} \Psi'_j \hat{C'}^2. Para um modelo AR(1), temos y_t = \Phi(B)\varepsilon_{t} = (\varphi_0 + \varphi B + \varphi_2 B^2 + \ldots ) \varepsilon_{t} = (1 + \phi B + \phi^2 B^2 + \ldots ) \varepsilon_t. Logo, para h = 1, \hat{y}_t(1) = 0,2674 x y_{t} = 0,3209 \hat{V}(1) = \hat{\varphi}_1^2 \hat{C}^2 = 1 x 0,3053 = 0,3053 IC(y_{0; 0,95}) = (0,3209 - 1,36 x \sqrt{0,3053}; 0,3209 + 1,36 x \sqrt{0,3053}) = (-1,5440; 2,1858). Para h = 2 \hat{y}_t(2) = 0,2674 x 0,3209 = 0,3058. \hat{V}(2) = \hat{\Psi}_0 \hat{\varepsilon}t^2 \hat{\Psi'}_t \varepsilon_t^2 = 0,3053 + 0,2674 \cdot 0,3053 = 0,8059. IC(y_{0; 0,95}) = (-1,5447; 2,1905). (a) \hat{\theta} = -0.4578, \; \hat{C}^2 = 0.3559 \hat{y}_t (h) = \left\{ \begin{array}{ll} 0.0478 \hat{\varepsilon}_t, & h=1\\ 0, & h=2 \end{array}\right. Para um modelo MA(1), temos y_t = \varphi(B)\varepsilon_t = (\varphi_0 + \varphi_1 B + \varphi_2 B^2 + \ldots ) \varepsilon_t = (1 - \theta B) \varepsilon_t. Logo, para h=1, \hat{y}_t(1) = 0.0478 x 1,05 = 0,0502 \hat{V}(1) = \hat{\varphi}_1^2 \hat{C}^2 = \hat{\varphi}_1^2 x 0.3559 = 0.3559. IC(y_{0; 0,95}) = (0,0502 - 1,96\sqrt{0,3559}; 0,0502 + 1,96\sqrt{0,3559}) = (-1,79631; 1,89635). Para h = 2 \hat{y}_t (2) = 0 \hat{V}(2) = \hat{\varphi}_2 \hat{V}^2 + \hat{\varphi}_1 \hat{V}^2 \hat{\varepsilon}_t^2 = 0.3559 + (-0,4579)^2 x 0.3559 = 1,0553. IC(y_{0; 0,95}) = (-1,90491; 2,00449). 3) (a) Sabemos que mu|D_{t+1} ~ N(at, R_t), em que at = m_{t-1} e R_t = C_{t-1} + V_t e y_t|D_{t+1} ~ N(ft, Qt), em que ft = at e m_{t+1} e Qt = R_t + V_t Entao, temos lin(y_t - yt|D_{t+1}) = E_col(mu_t|u_t, y_t, D_{t+1}) = varp(y_t|D_{t+1}) = Var(yt|D_{t+1}) + R_t Logo, (y_t, y_t')|D_{t+1} tem dist. normal bivariada da forma ( y \mu )|D_{t+1} ~ N \begin({align}) \begin({array{{c}}} \mu_t \mu_t \end{{array}}) \begin{{array}}{{c}} O_t - R_t R_t - R_t \end{{array}}\\ \end{{align}} \end{{align}} (b) PROPRIEDADES DA DIST. NORMAL - X_n N(ma, V) Se X = (X_1 \X_2) ~ N \begin{{matrix}} \begin{{matrix}} \mu_1 \mu_2 \end{{matrix}} \end{{matrix}}, V = \begin{{bmatrix}} V_{11} V_{12} \\ V_{22} V_{21} \end{{bmatrix}} Entao, X_1|X_2 ~ N(ma1(x1), va1(x2)) em que ma1(x2) = ma_1 + V_{12}V^{-1}_{22}(X_2 - ma_2) e va11(x2) = V_{11} - V_{12}V_{12}^{-1}V_{21} Aplicando na ND, temos mu_t|D_t ~ N(mt, Ct), com mt = mt-1+RtQt^{-1} (yt-mt-1) e \begin{{align}} O_t - R_t Rt - At^t Qt. \end{{align}} (c) C_t = R_t - A_t^2 Q_{t( R_t - R_t^2/ Q_t Q_{t R_t - R_t^2 R_{t+V/t}} - car (1-R_k6) + // tam. Nas 4) F = 1, G_t = A_t, V_t = V , w_{t-1} = 0 => qpt = mu_t+v_t =/N(0,V) mu_t = mu_{t-1} = mu_{t} mu_t|D_{t} => qpt\N(p_t, v_t) com mtD_t\N(mi, c_o), logPro = poka 5) y_t = mu_t+ vt, u(t)\N(0,Vt) mu_t = mu_{t-1}+ w_t, w(t)\N(0,W_t) o Tempo ta-1, mu_tD_{t+1}\N(at, R_t) 2 yt/ sprene^N(mu1 +Ns, Vt) (a) Pelo Teorema de Bayes, p(mu_t |Dt)\ap(mu_t|mu_t,Dt) p(mu_{t+1} D_{t-1}) proa/ expo\ap exp( -d\|2Vt (ys-mu_t-m^2) L assel exp{-1 \|2VRt[Re_tf] t(qt\eq_i (mu{t+1'})_4(mu_t+v_irn_2) + V\uQ_1^p-ar mu+Qu(ay_{t+1} + V\pointerin{b}] pro_enin_alf(+ B2-t\ea) \qada_b\begin({cases}) \end{{cases}) => Mu_t|Dt ~ N(m_1,Ct), em que MT = pressure etc/mu_t{sub+} \mu+ 2 \muln{+v/0(n-0.7\\'&d,0vj[pt(b..., sino] = ...v+0 )\pron \sigma \sum c\'are-Dvri&map,\;b[\text{'0})',\le\mu p,\\th] &dable(n,\'leam) < 0> Saul(spons)@\fracparv[\lim, tol\ perplex(sub+, ensec^7) ]&\sumk er(-MU&vu_q(p_t -\yt_{-L+U}) OC *t-1]Mi~cti\nae+= en_l=2_n}). ar_plT(*p'erinis, cons)\big& b,s\mu = ...> " \ul,aratt\ex\inspect.un) = troca-to [ef-q-s] Qu_boardkitN\nv{m?0} ( ( ) Sabemos que μ_t | D_{t-1} ~ N(a_t, R_t) e y_t | D_{t-1} ~ N (f_t, Q_t) , μ_t + N = m_{t-1} + N , pois E(y_t | D_{t-1}) = E( E(y_t | μ_t) | D_{t-1} ) = E( μ_t + w | D_{t-1} ) = E( μ_t | D_{t-1} ) + w = a_t + N, e Q_t = R_t + V_t, pois Var(y_t | D_{t-1}) = Var( E(y_t | μ_t ) | D_{t-1} ) + E( Var( y_t | μ_t ) | D_{t-1} ) = Var( μ_t + w | D_{t-1} ) + E( V_t | D_{t-1} ) = Var( μ_t | D_{t-1} ) + V_t = R_t + V_t Cov( y_t , μ_t | D_{t-1} ) = Cov( μ_t + w, μ_t | D_{t-1}) = Var( μ_t | D_{t-1} ) = R_t Assim ; \begin{pmatrix} y_t \\ μ_t \end{pmatrix} \bigg| D_{t-1} ~ N \left[\begin{pmatrix} m_{t-1} + N \\ m_{t-1} \end{pmatrix} , \begin{pmatrix} Q_t & R_t \\ R_t & R_t \end{pmatrix}\right]. assim, \begin{pmatrix} m_t = m_{t-1} + R_t Q_t^{-1} ( y_t - ( m_{t-1}+N ) ) = m_{t-1} + A_t ( y_t - a_t - N ) C_t = R_t - R_tQ_t^{-1} R_t = R_t - A_t^2 R_t, utilizando as propriedades da distribuiçao normal.

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®