·

Engenharia Civil ·

Mecânica dos Solos 2

· 2024/1

Envie sua pergunta para a IA e receba a resposta na hora

Fazer Pergunta

Texto de pré-visualização

Slide 1 Universidade Federal do Rio Grande do Sul Teoria de Rankine para solos coesivos Prof. Karla Heineck, D.Sc. Slide 2 Universidade Federal do Rio Grande do Sul  Para a determinação dos empuxos, iniciaremos com a teoria de Rankine para solos coesivos (c0).  Considerações:  Teoria de Rankine admite situação limite de ruptura  O atrito entre o terrapleno e o parâmetro vertical do plano de contenção é considerado nulo;  Terrapleno horizontal Slide 3 Universidade Federal do Rio Grande do Sul Teoria de Rankine (c0) 𝜎′ℎ𝑎 = 𝜎′𝑣. 𝐾𝑎 − 2. 𝑐′. 𝐾𝑎 𝜎′ℎ𝑝 = 𝜎′𝑣. 𝐾𝑝 + 2. 𝑐′. 𝐾𝑝 Slide 4 Universidade Federal do Rio Grande do Sul Teoria de Rankine (c0)  Diagrama caso ativo  Pela equação anterior, vê-se que haverá um ponto em que σ’h = 0. Esse ponto corresponde a: 𝐾𝑎. 𝜎′𝑣 = 2. 𝑐′. 𝐾𝑎  Considerando a profundidade hI, escrevemos: 𝐾𝑎. 𝛾. ℎ𝑖 = 2. 𝑐′. 𝐾𝑎 ℎ𝑖 = 2.𝑐′ 𝛾. 𝐾𝑎 Slide 5 Universidade Federal do Rio Grande do Sul Teoria de Rankine (c0)  Diagrama caso ativo  Observando o diagrama, podemos observar que as tensões horizontais tornam-se iguais a zero no ponto C  De A a C temos tensões de tração, profundidade na qual trincas de tração poderiam aparecer em função do solo sofrer tensões menores que zero Slide 6 Universidade Federal do Rio Grande do Sul Teoria de Rankine (c0) Considerações  CASO I – Tração no topo: possível fissuração  CASO II – Digrama de cálculo: desprezando tração  CASO III – Diagrama de projeto: recomendado Slide 7 Universidade Federal do Rio Grande do Sul Teoria de Rankine (c0) Considerações – caso passivo Ep = EpI + EpII Slide 8 Universidade Federal do Rio Grande do Sul Exemplo: Calcular o Ea e o Ep para o muro abaixo Slide 9 Universidade Federal do Rio Grande do Sul Exemplo: Calcular o Ea para o muro abaixo, considerando a sobrecarga