• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia Mecânica ·

Vibrações Mecânicas

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Vibrações

20

Vibrações

Vibrações Mecânicas

UNINOVE

Calculo de Frequencia Natural e Coeficiente de Amortecimento - Problema de Dinamica

2

Calculo de Frequencia Natural e Coeficiente de Amortecimento - Problema de Dinamica

Vibrações Mecânicas

UNINOVE

Vibração - Rao - Solução - Cap 5 - 4 ed

11

Vibração - Rao - Solução - Cap 5 - 4 ed

Vibrações Mecânicas

UNINOVE

Prova Vibrações e Dinâmica das Máquinas - Fator de Amortecimento

2

Prova Vibrações e Dinâmica das Máquinas - Fator de Amortecimento

Vibrações Mecânicas

UNINOVE

Vibrações Mecânicas

10

Vibrações Mecânicas

Vibrações Mecânicas

UNINOVE

Entrada inválida

1

Entrada inválida

Vibrações Mecânicas

UNINOVE

Vibrações e Dinâmica de Máquinas

5

Vibrações e Dinâmica de Máquinas

Vibrações Mecânicas

UNINOVE

Desenho Ilustrativo Sem Escala

1

Desenho Ilustrativo Sem Escala

Vibrações Mecânicas

UNINOVE

Cálculo de Vibração

3

Cálculo de Vibração

Vibrações Mecânicas

UNINOVE

Calculo da Massa de Absorvedores de Vibracao em Serra Radial para Madeira

2

Calculo da Massa de Absorvedores de Vibracao em Serra Radial para Madeira

Vibrações Mecânicas

UNINOVE

Texto de pré-visualização

Chapter 10\nVibration Measurement\nand Applications\n\n10.1\nVoltage sensitivity = V = 0.098 volt-meter/newton\nthickness = t = 2 mm = 2 / 1000 m\noutput voltage = 220 volts, pressure applied = Pz = ?\nE = v t Pz => 220 = (0.098)(1000) Pz\n. Pz = 1.1224 x 10^6 N/m^2\n\n10.2\nm = 0.5 kg, k = 10,000 N/m, c < 0\namplitude = Y = 4 / 1000 m\ntotal displacement of mass x = 12 / 1000 m\nrelative displacement = 3z = x - y = 3 / 1000 m\nZ = r^2 Y\n1 - r^2\nr = ωn / ω = 0.8165\nω3 = r ωn = 0.8165 (10000)^0.5 = 115.4705 rad/sec = 18.3777 Hz\n\n10.3\nZ = r^2 Y\n√((1 - r^2) + (2 s r)^2)\n= r^2 Y\n√((1 - r^2)^2 + (√2 r)²) = r^2 Y\n√(1 + r^2)\n\n10.4\nSpeed range:\n500 rpm = 52.36 rad/sec - 1500 rpm = 157.08 rad/sec\nx = X cos ωt ;\nZ = r^2 Y (E_1)\n\nCASE(i): Let Y = 0\nE0(E1) gives, for 2% error,\nZ / Y = |r^2 / |r^2 - 1|| = 1.02 => r = ω / ωn = 7.41414\n\n628 ωn = ω3 500 / 7.41414 = 70.0143 or 210.0428 rpm\n= 1.1669 or 3.5007 Hz = 7.3319 or 21.9957 rad/sec\n∴ ωn = 1.1669 Hz\n\nCASE (ii): Let Y = 0.6\nE0(E1) gives\nZ / Y = r^2 = E = 1.02\n=> 0.0404 r^4 - 0.5826 r^2 + 1.0404 = 0\nwhich gives r = 2.2562, 3.0546\nSince the quantity E attains maximum at\nr = 1 / √(1 - 2 r^2) = 1.8898 for Y = 0.6\nwe use r = 2.2562.\n∴ Maximum ωn = ω / r = 500 / (2.2562 × 60) = 3.6935 Hz\n\n10.5\nError factor for vibrometer is\nE = √(r^2) / √((1 - r^2) + (2 r Y)²)\nMaximum of E occurs at\nr* = 1 / √(1 - 2 Y^2)\nE |r=4 = |1 - 4²| = 1.0667\n\nPercent error = (E - 1) 100 = 6.67%. \n\n10.6\nError factor = E = √(r^2) / √((1 - r^2) + (2 r Y)²) \nE attains maximum at r* = √(1 - 2 r^2)\nFor Y = 0.67, r* = 3.1281 and E |r=r*, Y=0.67 = 1.0053\nPercent error = 0.53% 10.7\nSelect the vibrometer on the basis of lowest frequency being measured.\n(a) Y = 0:\nFrom E0 (10.19), Z / Y = 1.03 = r^2 / |r - 1| , r^2 = 1.03 / 0.03 = 34.3333\n=> r = ω / ωn = 2π(500) / 60 ωn = 5.9595\nωn = 8.9359 rad/sec = 1.4222 Hz\n\n(b) Y = 0.6:\nFrom E0 (10.19), Z / Y = 1.03 = r^2 / √((1 - r^2) + (2 rY)^2) = E\n(1.03)² {1 + r + 2 r² + 4 r³} = r^4\ni.e., 0.057404 r^4 - 0.56 r² + 1 = 0\ni.e., r² = 2.3535, 7.4018\ni.e., r = 1.5341, 2.7206\nBy selecting r = 2.7206,\nωn = 1000 π\n= 60 / 2.7206 = 19.2458 rad/sec\n= 3.06030 Hz\n\nThe quantity E attains maximum at\nr = 1 / √(1 - 2 r²) = 1.8898 for Y = 0.6. Hence we have\nto take r = 2.7206 to avoid peak of E.\n\n10.8\nS = t / 1000 m , ω = 4000 rpm = 418.88 rad/sec\nωn = √(g / S) = √(9.81 / 10) = 31.3209 rad/sec\nr = ω / ωn = 418.88 / 31.3209 = 13.3738\nError factor = r² / |1 - r²|\n= r² / |1 - 13.3738²|\n= 1.0056 10.9\nY = \\frac{r^2}{\\sqrt{(1-r^2)+(2rY)^2}} \\quad (E_1)\nMaximum of \\frac{Z}{Y} \\text{ occurs when } r = r^* = \\frac{1}{\\sqrt{1-2Y^2}} \\quad (see Eq. (3.84))\nFor \\text{ } Y=0.5, \\text{ } r^* = \\frac{1}{\\sqrt{0.5}} = 1.4142, \\text{ } (r^*)^2 = 2\n\\frac{Z}{Y} = \\frac{2}{\\sqrt{(1-2)^{2}+(2x0.5x1.4142)^{2}}} = \\frac{2}{\\sqrt{3}} = 1.1547\nWhen error is one percent, \\frac{Z}{Y} = 1.01 \\text{ or } \\frac{Y}{Z} = 0.9901\nEq. (E_1) can be rewritten as:\n\\left|\\frac{Z}{Y}\\right| = \\frac{(1-r^{2})^{2} + 4r^{3}r^{2}}{r^4}\n\\Rightarrow \\ r^{*} \\left(1 - \\left|\\frac{Z}{Y}\\right|^2 \\right) - r^2(2 + 4r^{2}) + 1 = 0 \\quad (E_2)\nFor \\frac{Z}{Y} = 0.9901 \\text{ and } Y = 0.5, (E_2) becomes \n0.0197 r^4 - r^2 + 1 = 0\n\\Rightarrow \\ r^{*} = 1.0203, 49.7411\n\\frac{Z}{Y} = 1.01 \\to 1.0527\nLowest frequency for one percent accuracy = 7.0527 \\text{ (5)} = 35.2635 Hz 10.10\nFrequency range > 100 Hz, \\text{ maximum error } = 2\\% \\nk = 4000 \\text{ N/m}, c = 0 \\Rightarrow T=0, m = ? \\nFor vibrometer with T=0, \\frac{Z}{Y} = \\frac{r^{2}}{\\sqrt{(r^{2}-1)^{2}+(2rY)^{2}}} \\text{ where } r^2 = \\frac{r^{2}}{|1-r|} = 1.02 \\text{ since } r \\text{ must be greater than one for higher frequencies}\\nor \\text{ } r^{2}=51, i.e., r=7.1414 10.18\n√( r² ) x 5 = 5.0294\nRecord indicated by vibrometer is given by\nx(t) = 21.0994 sin( 50t + 8.4934°) + 10.1331 sin (8πt + 4.0675°) + 5.0294 sin (12πt + 2.6905°) mm\nx(t) = -20 (50) sin 50t - 5 (150)² sin 150t mm/sec²\n = -50.000 sin 50t - 112500 sin 150t mm/sec²\nω_n = 100 rad/sec, ω₁ = ω₁ = √-1² = 80 ⇒ Y = 0.6\nr₁ = ω₁ / ω_n = 0.5; r₂ = ω₂ / ω_n = 1.5\nφ₁ = tan⁻¹( (2 Y r₁) / (1 - r₁²) ) = tan⁻¹( (2 × 0.25 × 0.5) / (1 - 0.25))\nφ₂ = tan⁻¹( (2 Y r₂)/(r - r₁) ) = tan⁻¹( (2 × 0.25 × 1.5)/(1 - 0.25)\n= 38.6589°\n50.00\n = 52.057.9206\n\n√( (r₁ - r₂)² + (2 Y r₁)² )\n\nr² = 112.500 = 51.335.6229\noutput of the accelerometer is given by\nx(t) = - 52.057.9206 sin (50t - 38.6589°)\n\t\t- 51.335.6229 sin (150t + 55.2222°) mm/sec² (E₃)\nIt can be seen that E₁ (E₃) is substantially different from E₂ (E₂). We have, from Eq. (10.19),\nZ = \n r² - 0.8312² \n | 1 - r¹|² \nY = Z/0.1232² = 40.5844 mm\nMax displacement of foundation = Y₁ = 40.5844 mm\nMax velocity of foundation = 6Y = 4249.9984 mm/sec\nMax acceleration of foundation = C²Y = 445059.8291 mm/sec²\n10.16\nMaximum speed = 1000 rpm = 50 Hz\nfor accelerometer, \n\t\t\t 1 \n\t( - ( r̃ - r²)² + (2Y r)² )\n = ——— \n\t\t √( - ( r̃ - r²)² + (2Y r)² )\n\nHere C = 20 N/m-s², Y = ——— = 0.8192 \n\t\t\t\t 2\nto100 rpm (E₁) gives \n\n\t\t ∴ = 24.3962 N-m\n\t\t\t\t \n 1/2m = 2.0/3.819 = 0.25\n\nk = m ω² => .01941 kg = 19.41 grams\nk = m = .01941 (100 × 2π) = 7622.7967 N/m 10.17\nG₁ = 2π(0.5) = rad/sec; ω₁ = ω₁/ω_n = 4; ω₂ = C₄/ω_n = 8; ω₃ = C₃/ω_n = 12\n\nφ₁ = tan⁻¹( (2 Y r₁) / (1 - r₁²) ) = tan⁻¹( (2(0.218)4) / .1 = -3.4934°\nφ₂ = tan⁻¹( (2 Y r₂) / (1 - r₁²) ) = tan⁻¹( (2 × 0.28 × 8) /(1 - .64)\n = -4.0675°\nφ₃ = tan⁻¹( (2 Y r₃) / (1 - r₁²) ) = tan⁻¹( (2 × 0.28 × 12) /(1 - .144)\n = -2.6905°\n\nr²\n√( - ( r̃ - r₁)² + (2 Y r)² )\n\n x20 = 21.0994\n\n√( ( r - r₁)² + (2 Y r₁²) )\nr² = x10 = 10.1331 10.19\nFor given beam,\nA = (1.6 × 25) mm² = 40 × 10⁻⁶ m²,\nI = 1/12 (0.025) (0.0016)³ = 8.53333 × 10⁻¹² m⁴,\ne = 0.05 m to 0.25 m.\nFor a cantilever beam, Fig. 8.15 gives ω₀ = (β₁, β₂) ² (E I / (ρ A e²))^{1/2}\nwhere (β₁, β₂)² = (1.875101)² = 3.516015\n(β₂)² = (4.694091)² = 22.03449\n(β₃)² = (7.854757)² = 61.69721\n(β₄)² = (10.995514)² = 120.90192\nFor spring steel, E = 200 × 10⁹ Pa, ρ = 7800 kg/m³\nE I / (ρ A e²)^{1/2} = (200 × 10⁹) (8.53333 × 10⁻¹²)\n(7800) (40 × 10⁻⁶) e² = 2.33882\nω₀ = (β₁, β₂)² / e²\nThe first four frequencies are given below:\n\n e = 0.05 m \n ω₁ = 3289.33 ω₂ = 20613.88 ω₃ = 57719.47 ω₄ = 113107.13\n e = 0.25 m \n ω₁ = 131.573 ω₂ = 824.6996 ω₃ = 2308.78 ω₄ = 4524.29\n\nHence, the range of frequencies that can be measured is given by ω > 131.573 rad/sec.\nHowever, for first mode only (which is easiest to excite), the range of frequencies is\n131.573 rad/sec ≤ ω ≤ 3289.33 rad/sec. 10.20\n\nk X R\nF0 = - 1 - r2\n(1 - r2)2 + (2 s) r2 N D (assume)\n\ndN dr - N dD dr = 0 ie, D dN dr - N dD dr = 0\n\nor {\n(1 - r2)2 + (2 s) r2}(-2 z r) - (1 - r2)2[2 (1 - r2) + 2 (2 s) r2] = 0\n\nThis equation can be simplified as\nr4 - 2 r2 + (1 - 4 s2) = 0\n\nand its solution is given by\nr2 = 1 ± 2 s or r = √1 + 2 s ; √1 - 2 s\n\nSince\n\nk X R\nF0 = - 1\n4 s (1 - s)\n(1)\n\nand\n\nk X R\nF0 = 1\n4 s (1 - s)\n(2)\n\nwe note that r = R1 = √1 - 2 s corresponds to a maximum and r = R2 = √1 + 2 s corresponds to a minimum of X R.\n\n637

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Vibrações

20

Vibrações

Vibrações Mecânicas

UNINOVE

Calculo de Frequencia Natural e Coeficiente de Amortecimento - Problema de Dinamica

2

Calculo de Frequencia Natural e Coeficiente de Amortecimento - Problema de Dinamica

Vibrações Mecânicas

UNINOVE

Vibração - Rao - Solução - Cap 5 - 4 ed

11

Vibração - Rao - Solução - Cap 5 - 4 ed

Vibrações Mecânicas

UNINOVE

Prova Vibrações e Dinâmica das Máquinas - Fator de Amortecimento

2

Prova Vibrações e Dinâmica das Máquinas - Fator de Amortecimento

Vibrações Mecânicas

UNINOVE

Vibrações Mecânicas

10

Vibrações Mecânicas

Vibrações Mecânicas

UNINOVE

Entrada inválida

1

Entrada inválida

Vibrações Mecânicas

UNINOVE

Vibrações e Dinâmica de Máquinas

5

Vibrações e Dinâmica de Máquinas

Vibrações Mecânicas

UNINOVE

Desenho Ilustrativo Sem Escala

1

Desenho Ilustrativo Sem Escala

Vibrações Mecânicas

UNINOVE

Cálculo de Vibração

3

Cálculo de Vibração

Vibrações Mecânicas

UNINOVE

Calculo da Massa de Absorvedores de Vibracao em Serra Radial para Madeira

2

Calculo da Massa de Absorvedores de Vibracao em Serra Radial para Madeira

Vibrações Mecânicas

UNINOVE

Texto de pré-visualização

Chapter 10\nVibration Measurement\nand Applications\n\n10.1\nVoltage sensitivity = V = 0.098 volt-meter/newton\nthickness = t = 2 mm = 2 / 1000 m\noutput voltage = 220 volts, pressure applied = Pz = ?\nE = v t Pz => 220 = (0.098)(1000) Pz\n. Pz = 1.1224 x 10^6 N/m^2\n\n10.2\nm = 0.5 kg, k = 10,000 N/m, c < 0\namplitude = Y = 4 / 1000 m\ntotal displacement of mass x = 12 / 1000 m\nrelative displacement = 3z = x - y = 3 / 1000 m\nZ = r^2 Y\n1 - r^2\nr = ωn / ω = 0.8165\nω3 = r ωn = 0.8165 (10000)^0.5 = 115.4705 rad/sec = 18.3777 Hz\n\n10.3\nZ = r^2 Y\n√((1 - r^2) + (2 s r)^2)\n= r^2 Y\n√((1 - r^2)^2 + (√2 r)²) = r^2 Y\n√(1 + r^2)\n\n10.4\nSpeed range:\n500 rpm = 52.36 rad/sec - 1500 rpm = 157.08 rad/sec\nx = X cos ωt ;\nZ = r^2 Y (E_1)\n\nCASE(i): Let Y = 0\nE0(E1) gives, for 2% error,\nZ / Y = |r^2 / |r^2 - 1|| = 1.02 => r = ω / ωn = 7.41414\n\n628 ωn = ω3 500 / 7.41414 = 70.0143 or 210.0428 rpm\n= 1.1669 or 3.5007 Hz = 7.3319 or 21.9957 rad/sec\n∴ ωn = 1.1669 Hz\n\nCASE (ii): Let Y = 0.6\nE0(E1) gives\nZ / Y = r^2 = E = 1.02\n=> 0.0404 r^4 - 0.5826 r^2 + 1.0404 = 0\nwhich gives r = 2.2562, 3.0546\nSince the quantity E attains maximum at\nr = 1 / √(1 - 2 r^2) = 1.8898 for Y = 0.6\nwe use r = 2.2562.\n∴ Maximum ωn = ω / r = 500 / (2.2562 × 60) = 3.6935 Hz\n\n10.5\nError factor for vibrometer is\nE = √(r^2) / √((1 - r^2) + (2 r Y)²)\nMaximum of E occurs at\nr* = 1 / √(1 - 2 Y^2)\nE |r=4 = |1 - 4²| = 1.0667\n\nPercent error = (E - 1) 100 = 6.67%. \n\n10.6\nError factor = E = √(r^2) / √((1 - r^2) + (2 r Y)²) \nE attains maximum at r* = √(1 - 2 r^2)\nFor Y = 0.67, r* = 3.1281 and E |r=r*, Y=0.67 = 1.0053\nPercent error = 0.53% 10.7\nSelect the vibrometer on the basis of lowest frequency being measured.\n(a) Y = 0:\nFrom E0 (10.19), Z / Y = 1.03 = r^2 / |r - 1| , r^2 = 1.03 / 0.03 = 34.3333\n=> r = ω / ωn = 2π(500) / 60 ωn = 5.9595\nωn = 8.9359 rad/sec = 1.4222 Hz\n\n(b) Y = 0.6:\nFrom E0 (10.19), Z / Y = 1.03 = r^2 / √((1 - r^2) + (2 rY)^2) = E\n(1.03)² {1 + r + 2 r² + 4 r³} = r^4\ni.e., 0.057404 r^4 - 0.56 r² + 1 = 0\ni.e., r² = 2.3535, 7.4018\ni.e., r = 1.5341, 2.7206\nBy selecting r = 2.7206,\nωn = 1000 π\n= 60 / 2.7206 = 19.2458 rad/sec\n= 3.06030 Hz\n\nThe quantity E attains maximum at\nr = 1 / √(1 - 2 r²) = 1.8898 for Y = 0.6. Hence we have\nto take r = 2.7206 to avoid peak of E.\n\n10.8\nS = t / 1000 m , ω = 4000 rpm = 418.88 rad/sec\nωn = √(g / S) = √(9.81 / 10) = 31.3209 rad/sec\nr = ω / ωn = 418.88 / 31.3209 = 13.3738\nError factor = r² / |1 - r²|\n= r² / |1 - 13.3738²|\n= 1.0056 10.9\nY = \\frac{r^2}{\\sqrt{(1-r^2)+(2rY)^2}} \\quad (E_1)\nMaximum of \\frac{Z}{Y} \\text{ occurs when } r = r^* = \\frac{1}{\\sqrt{1-2Y^2}} \\quad (see Eq. (3.84))\nFor \\text{ } Y=0.5, \\text{ } r^* = \\frac{1}{\\sqrt{0.5}} = 1.4142, \\text{ } (r^*)^2 = 2\n\\frac{Z}{Y} = \\frac{2}{\\sqrt{(1-2)^{2}+(2x0.5x1.4142)^{2}}} = \\frac{2}{\\sqrt{3}} = 1.1547\nWhen error is one percent, \\frac{Z}{Y} = 1.01 \\text{ or } \\frac{Y}{Z} = 0.9901\nEq. (E_1) can be rewritten as:\n\\left|\\frac{Z}{Y}\\right| = \\frac{(1-r^{2})^{2} + 4r^{3}r^{2}}{r^4}\n\\Rightarrow \\ r^{*} \\left(1 - \\left|\\frac{Z}{Y}\\right|^2 \\right) - r^2(2 + 4r^{2}) + 1 = 0 \\quad (E_2)\nFor \\frac{Z}{Y} = 0.9901 \\text{ and } Y = 0.5, (E_2) becomes \n0.0197 r^4 - r^2 + 1 = 0\n\\Rightarrow \\ r^{*} = 1.0203, 49.7411\n\\frac{Z}{Y} = 1.01 \\to 1.0527\nLowest frequency for one percent accuracy = 7.0527 \\text{ (5)} = 35.2635 Hz 10.10\nFrequency range > 100 Hz, \\text{ maximum error } = 2\\% \\nk = 4000 \\text{ N/m}, c = 0 \\Rightarrow T=0, m = ? \\nFor vibrometer with T=0, \\frac{Z}{Y} = \\frac{r^{2}}{\\sqrt{(r^{2}-1)^{2}+(2rY)^{2}}} \\text{ where } r^2 = \\frac{r^{2}}{|1-r|} = 1.02 \\text{ since } r \\text{ must be greater than one for higher frequencies}\\nor \\text{ } r^{2}=51, i.e., r=7.1414 10.18\n√( r² ) x 5 = 5.0294\nRecord indicated by vibrometer is given by\nx(t) = 21.0994 sin( 50t + 8.4934°) + 10.1331 sin (8πt + 4.0675°) + 5.0294 sin (12πt + 2.6905°) mm\nx(t) = -20 (50) sin 50t - 5 (150)² sin 150t mm/sec²\n = -50.000 sin 50t - 112500 sin 150t mm/sec²\nω_n = 100 rad/sec, ω₁ = ω₁ = √-1² = 80 ⇒ Y = 0.6\nr₁ = ω₁ / ω_n = 0.5; r₂ = ω₂ / ω_n = 1.5\nφ₁ = tan⁻¹( (2 Y r₁) / (1 - r₁²) ) = tan⁻¹( (2 × 0.25 × 0.5) / (1 - 0.25))\nφ₂ = tan⁻¹( (2 Y r₂)/(r - r₁) ) = tan⁻¹( (2 × 0.25 × 1.5)/(1 - 0.25)\n= 38.6589°\n50.00\n = 52.057.9206\n\n√( (r₁ - r₂)² + (2 Y r₁)² )\n\nr² = 112.500 = 51.335.6229\noutput of the accelerometer is given by\nx(t) = - 52.057.9206 sin (50t - 38.6589°)\n\t\t- 51.335.6229 sin (150t + 55.2222°) mm/sec² (E₃)\nIt can be seen that E₁ (E₃) is substantially different from E₂ (E₂). We have, from Eq. (10.19),\nZ = \n r² - 0.8312² \n | 1 - r¹|² \nY = Z/0.1232² = 40.5844 mm\nMax displacement of foundation = Y₁ = 40.5844 mm\nMax velocity of foundation = 6Y = 4249.9984 mm/sec\nMax acceleration of foundation = C²Y = 445059.8291 mm/sec²\n10.16\nMaximum speed = 1000 rpm = 50 Hz\nfor accelerometer, \n\t\t\t 1 \n\t( - ( r̃ - r²)² + (2Y r)² )\n = ——— \n\t\t √( - ( r̃ - r²)² + (2Y r)² )\n\nHere C = 20 N/m-s², Y = ——— = 0.8192 \n\t\t\t\t 2\nto100 rpm (E₁) gives \n\n\t\t ∴ = 24.3962 N-m\n\t\t\t\t \n 1/2m = 2.0/3.819 = 0.25\n\nk = m ω² => .01941 kg = 19.41 grams\nk = m = .01941 (100 × 2π) = 7622.7967 N/m 10.17\nG₁ = 2π(0.5) = rad/sec; ω₁ = ω₁/ω_n = 4; ω₂ = C₄/ω_n = 8; ω₃ = C₃/ω_n = 12\n\nφ₁ = tan⁻¹( (2 Y r₁) / (1 - r₁²) ) = tan⁻¹( (2(0.218)4) / .1 = -3.4934°\nφ₂ = tan⁻¹( (2 Y r₂) / (1 - r₁²) ) = tan⁻¹( (2 × 0.28 × 8) /(1 - .64)\n = -4.0675°\nφ₃ = tan⁻¹( (2 Y r₃) / (1 - r₁²) ) = tan⁻¹( (2 × 0.28 × 12) /(1 - .144)\n = -2.6905°\n\nr²\n√( - ( r̃ - r₁)² + (2 Y r)² )\n\n x20 = 21.0994\n\n√( ( r - r₁)² + (2 Y r₁²) )\nr² = x10 = 10.1331 10.19\nFor given beam,\nA = (1.6 × 25) mm² = 40 × 10⁻⁶ m²,\nI = 1/12 (0.025) (0.0016)³ = 8.53333 × 10⁻¹² m⁴,\ne = 0.05 m to 0.25 m.\nFor a cantilever beam, Fig. 8.15 gives ω₀ = (β₁, β₂) ² (E I / (ρ A e²))^{1/2}\nwhere (β₁, β₂)² = (1.875101)² = 3.516015\n(β₂)² = (4.694091)² = 22.03449\n(β₃)² = (7.854757)² = 61.69721\n(β₄)² = (10.995514)² = 120.90192\nFor spring steel, E = 200 × 10⁹ Pa, ρ = 7800 kg/m³\nE I / (ρ A e²)^{1/2} = (200 × 10⁹) (8.53333 × 10⁻¹²)\n(7800) (40 × 10⁻⁶) e² = 2.33882\nω₀ = (β₁, β₂)² / e²\nThe first four frequencies are given below:\n\n e = 0.05 m \n ω₁ = 3289.33 ω₂ = 20613.88 ω₃ = 57719.47 ω₄ = 113107.13\n e = 0.25 m \n ω₁ = 131.573 ω₂ = 824.6996 ω₃ = 2308.78 ω₄ = 4524.29\n\nHence, the range of frequencies that can be measured is given by ω > 131.573 rad/sec.\nHowever, for first mode only (which is easiest to excite), the range of frequencies is\n131.573 rad/sec ≤ ω ≤ 3289.33 rad/sec. 10.20\n\nk X R\nF0 = - 1 - r2\n(1 - r2)2 + (2 s) r2 N D (assume)\n\ndN dr - N dD dr = 0 ie, D dN dr - N dD dr = 0\n\nor {\n(1 - r2)2 + (2 s) r2}(-2 z r) - (1 - r2)2[2 (1 - r2) + 2 (2 s) r2] = 0\n\nThis equation can be simplified as\nr4 - 2 r2 + (1 - 4 s2) = 0\n\nand its solution is given by\nr2 = 1 ± 2 s or r = √1 + 2 s ; √1 - 2 s\n\nSince\n\nk X R\nF0 = - 1\n4 s (1 - s)\n(1)\n\nand\n\nk X R\nF0 = 1\n4 s (1 - s)\n(2)\n\nwe note that r = R1 = √1 - 2 s corresponds to a maximum and r = R2 = √1 + 2 s corresponds to a minimum of X R.\n\n637

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®