·

Engenharia Mecânica ·

Elementos de Máquinas

Send your question to AI and receive an answer instantly

Ask Question

Preview text

FIGURE 6.25 Air compressor for Example Problem 6.11. FIGURE 6.26 Kinematic diagram for Example Problem 6.11. FIGURE 6.27 Primary instant centers for Example Problem 6.11. FIGURE 6.31 Instant centers for Example Problem 6.12. FIGURE 6.29 Locking brace for Example Problem 6.12. ω₂ := 3 rad/s\nr_AB := 3 ft\nV_B := r_AB·ω₂ = 9 ft/s\n3 - Incorporar o procedimento ger r_CD:=5.4 ft\nv_C:=13.8 ft/s\nω_4:=v_C/r_CD=2.556 rad/s\n\nComo a direção da velocidade angular é con\n\nCarriage\n7\"\nDriver arm\n15\"\nSlave arm\n16\"\n\nFIGURE 6.38 Turnover mechanism for Example Problem 6.16. AB:=15 in\nBC:=7 in\nCD:=16 in\n∠BAM:=60°\nr_AB:=15 in\nω_2:=5 rad/s\n\nBM:=AB⋅sin(∠BAM)=12.99 in\nAM:=AB⋅cos(∠BAM)=7.5 in\nAo longo da vertical BCM,\n\nCM:=BM-BC=5.99 in\n\nO ângulo CDM e a distância DN podem ser determinados a partir do triâng\n\n∠MDC:=asin(CM/CD)=21.987°\nDM⋅cos(∠MDC)=14.836 in\n\nocedimento gera\n\nde conhecida,\nElo 3 contém o ponto para o qual a velocid\n\nV_B:=r_AB⋅ω_2=75 in/s\n\nneos (12) - (23) ∠DAN:=180°−∠BAM=120°\n∠AND:=180°−(∠DAN+∠MDC)=38.013°\n∠ADN:=∠MDC=21.987°\n\nAD:=DM−AM=7.336 in\nAN:=sin(∠ADN)⋅(AD/sin(∠AND))=4.46 in\nBN:=AB−AN=10.54 in\n\nSimilarmente\n\nDN:=sin(∠DAN)⋅(AN/sin(∠ADN))=10.317 in\nCN:=CD−DN=5.683 in\nf) O elo 3 gira instantaneamente em torno do centro instantâneo (13). Assim, a velocidade angular do elo 3 pode ser calculada a parte do centro instantâneo comum (23)\n\nv_23:=V_B=75 in/s\nr_13|23:=BN=10.54 in\nω_3:=v_23/r_13|23=7.116 rad/s r_{13|34} := CN = 5.683 in\nV_{34} := \\omega_3 \\cdot r_{13|34} = 40.441 \\, \\frac{in}{s}\nCom um ângulo de 22° com a vertical ou 68\n\nr_{14|23} := CD = 16 \\, in\n\\omega_4 := \\frac{V_{34}}{r_{14|23}} = 2.528 \\, \\frac{rad}{s}