• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia de Alimentos ·

Cálculo 4

· 2022/2

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Lista de Exercicios Resolucao Equacao de Laplace Boyce e DiPrima

1

Lista de Exercicios Resolucao Equacao de Laplace Boyce e DiPrima

Cálculo 4

USP

Exercício - Equação Diferencial - Cálculo 4 - 2023-2

5

Exercício - Equação Diferencial - Cálculo 4 - 2023-2

Cálculo 4

USP

Lista 1 - Boyce - Cálculo 4 2022 2

1

Lista 1 - Boyce - Cálculo 4 2022 2

Cálculo 4

USP

Solucao de EDO via Transformada de Laplace - Teoria e Aplicacoes

1

Solucao de EDO via Transformada de Laplace - Teoria e Aplicacoes

Cálculo 4

USP

Formulas de Euler Fourier - Anotacoes

1

Formulas de Euler Fourier - Anotacoes

Cálculo 4

USP

Questão - Separação de Variáveis - Cálculo 4 - 2023-2

1

Questão - Separação de Variáveis - Cálculo 4 - 2023-2

Cálculo 4

USP

Lista de Exercicios Equacao de Ondas Boyce-Diprima

1

Lista de Exercicios Equacao de Ondas Boyce-Diprima

Cálculo 4

USP

Exercícios Resolvidos Series de Fourier - Calculos e Desenvolvimento

5

Exercícios Resolvidos Series de Fourier - Calculos e Desenvolvimento

Cálculo 4

USP

Lista de Exercicios Resolvidos - Problemas de Valores de Contorno - Boyce e DiPrima

1

Lista de Exercicios Resolvidos - Problemas de Valores de Contorno - Boyce e DiPrima

Cálculo 4

USP

Lista de Exercícios Resolvendo a Equação de Difusão do Calor - Boyce DiPrima

1

Lista de Exercícios Resolvendo a Equação de Difusão do Calor - Boyce DiPrima

Cálculo 4

USP

Texto de pré-visualização

Lista de exercicios 6 — Equacdo de Bessel (do livro de Boyce e Di Prima) Problems In each of Problems | through 3, show that the given differential 9. In this section we showed that one solution of Bessel’s equation equation has a regular singular point at x = 0, and determine two of order zero solutions for x > 0. Lily] =x2y" +xy’ +2x2y =0 Ll xy" + 2xy' + xy =0 is Jo, where Jo(x) is given by equation (7) with aj = 1. According to 2. x?y"+3xy'+(1+x)y =0 Theorem 5.6.1, a second solution has the form (x > 0) 3. x?y"+xy' + 2xy =0 os , 4. Find two solutions (not multiples of each other) of the Bessel ya(x) = Jo(x) Inx + »— bnx". 3 n=1 equation of order — 2 a. Show that Co Co 9 = _ n n ey" bxy! 4 G _ i) =0, x>0. Lyx) = Sona = box" + So nbax 4 n=2 n=1 CO 5. Show that the Bessel equation of order one-half + S- b,x"t? 42x Ji(x). (34) 1 n=1 xy" +xy+(x7-—])y=0, x>0 4 b. Substituting the series representation for Jo(x) in equation (34), show that can be reduced to the equation 00 Way <0 bix + 2box? + S- (n> by + bya)" n=3 by the change of dependent variable y = x~!/2v(x). From this, _ =>} (=1)"2nx7” (35) conclude that y,(x) =x7!/cosx and y.(x) =x7!/*sinx are ~ 2nr(n!j2 ~ solutions of the Bessel equation of order one-half. nl 6. Show directly that the series for Jo(x), equation (7), converges c. Note that only even powers of x appear on the right-hand absolutely for all x. side of equation (35). Show that b} = b3 = bs = --- = 0, 7. Show directly that the series for J; (x), equation (27), converges by = — and that absolutely for all x and that Jj(x) = —J;(x). 21!) 8. Consider the Bessel equation of order v (2n)2boy + by_2 = Ge n=2.3.4.... n! xy" + xy +(x2-v7)y=0, x>0, Deduce that where v is real and positive. a. Show that x = 0 is a regular singular point and that the roots by = to (: +4 5) and be = to (: 4 I 4 :) of the indicial equation are v and —v. 2? 4° 2 2? 4? 6? 2 3 b. Corresponding to the larger root v, show that one solution is The general solution of the recurrence relation is —| n+l H, 1 x\? 1 x\4 by = on Substituting for b, in the expression for ma =x" [1-5 (5) +55 5 2 h(n!) W(il+v)\2 21 +v)(2+v) \2 yo(x), we obtain the solution given in equation (10). 10. Find a second solution of Bessel’s equation of order one by oo 1m 2m computing the c,(72) and a of equation (24) of Section 5.6 according + S> ED (5) . to the formulas (19) and (20) of that section. Some guidelines along 3 the way of this calculation are the following. First, use equation “mil tv). (mtv) \2 he way of this calculati he following. Fi quation (24) of this section to show that a,;(—1) and a\( —1) are 0. Then show that c. If 2v is not an integer, show that a second solution is c;(—1) = 0 and, from the recurrence relation, that c,(—1) = 0 for 5 , 2= 3,5, ... . Finally, use equation (25) to show that (x) _y 1 1 x 7 1 x ao xX) =x — —— | = ————_——~ [ = =_— y ld—v)\2 21 —v)(2—-v) \2 a0) =~ Cry)’ ao ar) = ————_—————., oo 2m (r+ Dr +3)(7+3)(7 +5) +> nk m\(1—v)---(m—v)y \2 : and that a (=1)"ao . A_(1) = hm & 3. Note that y;(x) — 0 as x — 0, and that y.(x) is unbounded as (r+1)---(r+2m—1)(r +3) ---(r +2m+4+1) x > 0. d. Verify by direct methods that the power series in the Then show that expressions for y;(x) and y2(x) converge absolutely for all x. (-1)""! (Hn + Hn-1) Also verify that y is a solution, provided only that v is not an C2m(—1) = ~~ 2mm\in —b! —p! » mot. integer.

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Lista de Exercicios Resolucao Equacao de Laplace Boyce e DiPrima

1

Lista de Exercicios Resolucao Equacao de Laplace Boyce e DiPrima

Cálculo 4

USP

Exercício - Equação Diferencial - Cálculo 4 - 2023-2

5

Exercício - Equação Diferencial - Cálculo 4 - 2023-2

Cálculo 4

USP

Lista 1 - Boyce - Cálculo 4 2022 2

1

Lista 1 - Boyce - Cálculo 4 2022 2

Cálculo 4

USP

Solucao de EDO via Transformada de Laplace - Teoria e Aplicacoes

1

Solucao de EDO via Transformada de Laplace - Teoria e Aplicacoes

Cálculo 4

USP

Formulas de Euler Fourier - Anotacoes

1

Formulas de Euler Fourier - Anotacoes

Cálculo 4

USP

Questão - Separação de Variáveis - Cálculo 4 - 2023-2

1

Questão - Separação de Variáveis - Cálculo 4 - 2023-2

Cálculo 4

USP

Lista de Exercicios Equacao de Ondas Boyce-Diprima

1

Lista de Exercicios Equacao de Ondas Boyce-Diprima

Cálculo 4

USP

Exercícios Resolvidos Series de Fourier - Calculos e Desenvolvimento

5

Exercícios Resolvidos Series de Fourier - Calculos e Desenvolvimento

Cálculo 4

USP

Lista de Exercicios Resolvidos - Problemas de Valores de Contorno - Boyce e DiPrima

1

Lista de Exercicios Resolvidos - Problemas de Valores de Contorno - Boyce e DiPrima

Cálculo 4

USP

Lista de Exercícios Resolvendo a Equação de Difusão do Calor - Boyce DiPrima

1

Lista de Exercícios Resolvendo a Equação de Difusão do Calor - Boyce DiPrima

Cálculo 4

USP

Texto de pré-visualização

Lista de exercicios 6 — Equacdo de Bessel (do livro de Boyce e Di Prima) Problems In each of Problems | through 3, show that the given differential 9. In this section we showed that one solution of Bessel’s equation equation has a regular singular point at x = 0, and determine two of order zero solutions for x > 0. Lily] =x2y" +xy’ +2x2y =0 Ll xy" + 2xy' + xy =0 is Jo, where Jo(x) is given by equation (7) with aj = 1. According to 2. x?y"+3xy'+(1+x)y =0 Theorem 5.6.1, a second solution has the form (x > 0) 3. x?y"+xy' + 2xy =0 os , 4. Find two solutions (not multiples of each other) of the Bessel ya(x) = Jo(x) Inx + »— bnx". 3 n=1 equation of order — 2 a. Show that Co Co 9 = _ n n ey" bxy! 4 G _ i) =0, x>0. Lyx) = Sona = box" + So nbax 4 n=2 n=1 CO 5. Show that the Bessel equation of order one-half + S- b,x"t? 42x Ji(x). (34) 1 n=1 xy" +xy+(x7-—])y=0, x>0 4 b. Substituting the series representation for Jo(x) in equation (34), show that can be reduced to the equation 00 Way <0 bix + 2box? + S- (n> by + bya)" n=3 by the change of dependent variable y = x~!/2v(x). From this, _ =>} (=1)"2nx7” (35) conclude that y,(x) =x7!/cosx and y.(x) =x7!/*sinx are ~ 2nr(n!j2 ~ solutions of the Bessel equation of order one-half. nl 6. Show directly that the series for Jo(x), equation (7), converges c. Note that only even powers of x appear on the right-hand absolutely for all x. side of equation (35). Show that b} = b3 = bs = --- = 0, 7. Show directly that the series for J; (x), equation (27), converges by = — and that absolutely for all x and that Jj(x) = —J;(x). 21!) 8. Consider the Bessel equation of order v (2n)2boy + by_2 = Ge n=2.3.4.... n! xy" + xy +(x2-v7)y=0, x>0, Deduce that where v is real and positive. a. Show that x = 0 is a regular singular point and that the roots by = to (: +4 5) and be = to (: 4 I 4 :) of the indicial equation are v and —v. 2? 4° 2 2? 4? 6? 2 3 b. Corresponding to the larger root v, show that one solution is The general solution of the recurrence relation is —| n+l H, 1 x\? 1 x\4 by = on Substituting for b, in the expression for ma =x" [1-5 (5) +55 5 2 h(n!) W(il+v)\2 21 +v)(2+v) \2 yo(x), we obtain the solution given in equation (10). 10. Find a second solution of Bessel’s equation of order one by oo 1m 2m computing the c,(72) and a of equation (24) of Section 5.6 according + S> ED (5) . to the formulas (19) and (20) of that section. Some guidelines along 3 the way of this calculation are the following. First, use equation “mil tv). (mtv) \2 he way of this calculati he following. Fi quation (24) of this section to show that a,;(—1) and a\( —1) are 0. Then show that c. If 2v is not an integer, show that a second solution is c;(—1) = 0 and, from the recurrence relation, that c,(—1) = 0 for 5 , 2= 3,5, ... . Finally, use equation (25) to show that (x) _y 1 1 x 7 1 x ao xX) =x — —— | = ————_——~ [ = =_— y ld—v)\2 21 —v)(2—-v) \2 a0) =~ Cry)’ ao ar) = ————_—————., oo 2m (r+ Dr +3)(7+3)(7 +5) +> nk m\(1—v)---(m—v)y \2 : and that a (=1)"ao . A_(1) = hm & 3. Note that y;(x) — 0 as x — 0, and that y.(x) is unbounded as (r+1)---(r+2m—1)(r +3) ---(r +2m+4+1) x > 0. d. Verify by direct methods that the power series in the Then show that expressions for y;(x) and y2(x) converge absolutely for all x. (-1)""! (Hn + Hn-1) Also verify that y is a solution, provided only that v is not an C2m(—1) = ~~ 2mm\in —b! —p! » mot. integer.

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®