·

Engenharia Ambiental ·

Hidráulica

· 2022/2

Envie sua pergunta para a IA e receba a resposta na hora

Fazer Pergunta

Texto de pré-visualização

1. CONTEXTUALIZAÇÃO DO PROJETO O projeto de caracterização fluvial tem como objetivo principal estudar as características físicas, químicas e biológicas dos rios e corpos d'água em geral. Essa análise detalhada é fundamental para a compreensão das condições ambientais locais e para o desenvolvimento de estratégias eficazes de conservação e gestão dos recursos hídricos. A localidade do projeto para a caracterização fluvial é realizada no corpo hídrico do Rio Mearim no município de Bacabal no Maranhão, com dados obtidos pela Estação Fluviométrica 33290000. No estudo foram utilizadas as estações da ANA, localizadas nos pontos do baixo curso de Códigos 33290000 (Estação fluviométrica do rio Mearim na cidade de Bacabal- Ma), na qual foram selecionadas como ponto exutório do rio, onde mais de 90% da descarga líquida e sólida das bacias passam por estes pontos. A escolha dessas estações foi baseada em diversos fatores, incluindo os dados de variação diária da régua (altura da lâmina d'água), a ausência de influência da maré dinâmica e a facilidade logística de campo, o que permitiu o uso das equações da ANA para o cálculo das descargas sólidas (Material Particulado em Suspensão-MPS), bem como para determinação estimada do Carbono Orgânico Particulado-COP transportado em cada rio. Além de identificar as condições atuais do rio em questão, a caracterização fluvial permite comparar essas informações com dados históricos e/ou com padrões estabelecidos por órgãos reguladores, como a Agência Nacional de Águas (ANA) e o Conselho Nacional do Meio Ambiente (CONAMA). Dessa forma, é possível avaliar se as condições da água estão melhorando, piorando ou permanecendo estáveis ao longo do tempo. Uma Estação Fluviométrica é um local onde se realizam medições de nível e vazão de um curso d'água. O nível, também conhecido como cota limnimétrica, é medido duas vezes ao dia (às 7:00h e às 17:00h) por um observador local, geralmente um morador próximo, que recebe uma pequena gratificação para executar as leituras nas réguas graduadas implantadas nas margens do rio. A medição de vazão, que requer técnicas e equipamentos mais complexos, é realizada por hidrotécnicos em visitas trimestrais às estações (MOREIRA et al., 1996). Cada Estação Fluviométrica é caracterizada pelo nome do rio principal e pelo local onde se encontra. Além disso, cada estação é identificada por um código numérico de oito algarismos, sendo que os dois primeiros indicam a sub-bacia em que a estação está localizada. Através desses códigos, é possível acessar os dados hidrométricos de cada estação pela internet, no site da ANA, sem custos adicionais (MOREIRA et al., 1998). 2. CARACTERIZAÇÃO FLUVIAL 2.1. Perfil Transversal O rio Mearim, com uma extensão de 742 km, tem sua nascente no município de Formosa da Serra Negra, nas encostas da Serra da Menina, a uma altitude de aproximadamente 460 metros. Segue em um longo trajeto na direção sudoeste-nordeste até a cidade de Esperantinópolis, onde recebe as contribuições do rio Flores e, em seguida, direciona-se para o norte, desaguando no Oceano Atlântico pela baía de São Marcos, entre as cidades de São Luís e Alcântara. Com uma área de 98.289,05 km2, a bacia hidrográfica do Mearim é a maior em área do Maranhão, ocupando 29,6% da área total do estado, e compreende 84 municípios, sendo que 50 estão totalmente inseridos no vale e os demais se situam parcialmente na bacia. A população estimada em 2017, pelo IBGE, era de 2.257.268 habitantes. De acordo com a Codevasf (2017), os principais afluentes do rio Mearim pela margem direita são o rio Corda, com 130,8 km de extensão, e o rio Flores, com 152,8 km. Já pela margem esquerda destacam-se o rio Pindaré, com 569,2 km, que é o mais extenso afluente da bacia, e o rio Grajaú, com 546,3 km. A bacia hidrográfica do rio Mearim apresenta um regime hidrológico caracterizado por duas estações distintas: a estação das águas máximas, que ocorre entre os meses de fevereiro e maio, e a estação das águas mínimas, que acontece entre agosto e novembro. É comum ocorrerem fenômenos hidrológicos extremos, como enchentes e secas. O rio Mearim passa por importantes centros urbanos ao longo de seu curso principal, incluindo Barra do Corda, no Alto Mearim; Bacabal, São Luís Gonzaga do Maranhão, Pedreiras, Trizidela do Vale e Esperantinópolis, no Médio; e Arari e Vitória do Mearim, no Baixo curso. Por meio da extração do perfil transversal pelo programa Hidro, para tal rio o perfil é apresentado na Figura 1. Gráfico 1 – Perfil Transversal do rio Mearim Fonte: Hidro 2.2. Curva Chave A Curva-Chave de rios, também conhecida como Curva de Hack, é um gráfico que representa a relação entre o tamanho de um rio e sua vazão. Ela é uma ferramenta importante na hidrologia para entender como as características físicas de um rio afetam seu fluxo de água. A curva é construída traçando-se o logaritmo do tamanho do rio (largura, profundidade, comprimento ou área de drenagem) no eixo X e o logaritmo da vazão no eixo Y. O resultado é uma curva que geralmente tem uma forma de parábola, com a parte mais alta representando os rios de tamanho médio, que têm uma vazão mais alta em relação ao seu tamanho do que os rios menores ou maiores. A curva-chave é geralmente representada em um gráfico com escala logarítmica, onde o eixo horizontal representa a altura de água (em metros), e o eixo vertical representa a vazão (em metros cúbicos por segundo). A curva-chave é geralmente representada por uma linha curva, que pode ser aproximada por uma equação matemática, como por exemplo: Q = a*(H- h0)^n, onde Q é a vazão (em m3/s), h é a altura de água (em metros), a, h0 e n são constantes que dependem das características do rio e da seção transversal em que a medição foi feita. A curva-chave de rios é útil para prever a vazão de um rio em diferentes pontos de sua extensão, permitindo que os hidrólogos determinem a quantidade de água que pode ser esperada em uma determinada região, mesmo em áreas onde não há dados de medição disponíveis. A curva-chave é importante para diversas aplicações relacionadas ao gerenciamento de recursos hídricos, como por exemplo: previsão de enchentes, monitoramento de secas, dimensionamento de estruturas hidráulicas (como pontes e barragens), estudos de impacto ambiental, entre outros. Para o rio Mearim a curva-chave é a seguinte, fornecida pelo Hidroweb: Q=0,0336 (H−1,48) 1,202 Gráfico 2 – Curva Chave do rio Mearim 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 Curva-Chave Q (m³/s) H (m) Fonte: HidroWeb 2.3. Cotas As cotas topográficas de um rio são importantes para o estudo e monitoramento de sua dinâmica e comportamento ao longo do tempo. Elas representam a altitude do terreno em relação a um datum (ponto de referência) específico e são geralmente medidas em metros. As cotas topográficas permitem que sejam feitas análises de perfil longitudinal e transversal do rio, identificando variações em sua largura, profundidade e velocidade ao longo do seu curso. Isso é fundamental para o planejamento de obras de engenharia, como construção de pontes, barragens e canais, bem como para a gestão de recursos hídricos e ambientais. As cotas topográficas são obtidas por meio de levantamentos topográficos, que podem ser feitos por meio de técnicas como a utilização de GPS, estação total e nivelamento. Os dados coletados são então processados e representados em um mapa topográfico, que apresenta a altitude dos pontos do terreno. Como a vazão máxima transportada pelo canal é apenas 8% da vazão do rio, as cotas de influência do rio pode ser calculada pela seguinte equação: Q=0,0336∙ (800−1,48) 1,202=103,49m 3/s Qtrans= 8 100 ∙103,49=8,28m 3/s 0,0336∙(H inferior−1,48) 1,202=103,49−8,28 H inferior=746,50m Portanto, apenas entre as cotas 746,50m a 800m que gera a vazão que será transportada pelo canal. 2.4. Vazões Médias, Máximas e Mínimas A vazão em rios e canais é um parâmetro hidrológico fundamental para o estudo e gestão dos recursos hídricos. Ela se refere à quantidade de água que passa por uma seção transversal em um determinado tempo e é expressa em metros cúbicos por segundo (m³/s). A vazão é influenciada por diversos fatores, como a precipitação, a geologia do local, a topografia, a vegetação e as atividades humanas. A medição da vazão é realizada por meio de aparelhos denominados hidrômetros, que são instalados em seções transversais do rio ou canal. Essas seções são escolhidas de acordo com critérios técnicos, como a representatividade da vazão da bacia hidrográfica e a facilidade de acesso. Os hidrômetros podem ser de diversos tipos, como o flutuador, o molinete e o ultrassônico, e cada um apresenta vantagens e desvantagens. Ainda existem outras técnicas para medir a vazão em rios e canais, como o uso de medidores de velocidade, o emprego de equipamentos de ultrassom, entre outras. Cada técnica tem suas vantagens e desvantagens, e a escolha da melhor opção depende das condições do local e dos recursos disponíveis. A vazão em rios e canais é influenciada por diversos fatores, como a topografia da bacia hidrográfica, a precipitação, a vegetação, a evapotranspiração, entre outros. Por isso, a análise da vazão é importante para entender as características hidrológicas da região e auxiliar na tomada de decisões em relação ao uso da água. Por exemplo, em regiões onde a vazão é baixa, pode ser necessário limitar a captação de água para evitar o esgotamento dos recursos hídricos. Já em áreas com vazão alta, é possível aproveitar a água para atividades que dependem do fluxo de água, como a produção de energia hidrelétrica. Além disso, a análise da vazão também é importante para a prevenção de desastres naturais, como enchentes e deslizamentos de terra. Com o monitoramento da vazão em rios e canais, é possível antecipar possíveis eventos extremos e adotar medidas preventivas para minimizar os danos causados. A vazão desse canal como foi limitada em 8% da vazão do rio, será limitado pela estrutura do canal para receber a vazão de 8,28m³/s. 3. DIMENSIONAMENTO DO CANAL DE DERIVAÇÃO 3.1. Aspectos técnicos do canal Projetar um canal é uma tarefa complexa que envolve diversas etapas e aspectos técnicos a serem considerados. O objetivo do projeto é criar uma estrutura que permita o escoamento controlado de água, garantindo a segurança das áreas adjacentes e atendendo às necessidades específicas da região. Para tal obra, será adotado um canal de concreto liso, pois o concreto apresenta algumas das principais vantagens do concreto em canais:  Durabilidade: o concreto é um material altamente resistente e durável, o que o torna ideal para a construção de estruturas que serão submetidas a condições extremas, como a ação da água e do tempo.  Resistência à abrasão: o concreto é capaz de resistir à erosão causada pela passagem da água, o que garante a longevidade do canal e reduz a necessidade de manutenção.  Versatilidade: o concreto pode ser moldado em diferentes formas e tamanhos, o que permite a criação de canais com geometrias variadas, de acordo com as necessidades específicas da região.  Impermeabilidade: o concreto pode ser utilizado em diferentes espessuras para garantir a impermeabilização do canal, o que evita vazamentos e desperdícios de água.  Facilidade de construção: a construção de canais de concreto pode ser realizada com facilidade e rapidez, utilizando técnicas de moldagem in loco ou de pré- fabricação, o que garante uma execução da obra sem gerar granes problemas. Por fim, a geométrica será em seção transversal trapezoidal, com o mínimo perímetro molhado, para ter a maior área molhada possível para obter a maior vazão para certa geometria, que é o objetivo para economia de consumo de materiais. Os canais de seção trapezoidal apresentam diversas vantagens em relação a outros tipos de canais:  Economia de materiais: Os canais de seção trapezoidal requerem menos materiais para a sua construção, uma vez que a sua geometria proporciona maior estabilidade e resistência, mesmo com menor quantidade de materiais utilizados.  Facilidade de construção: Os canais de seção trapezoidal são relativamente fáceis de serem construídos, pois sua geometria simples permite a utilização de métodos de construção mais simples e com menor necessidade de mão-de-obra especializada.  Facilidade de limpeza: A geometria trapezoidal dos canais permite uma melhor drenagem da água e a redução do acúmulo de sedimentos e detritos no fundo do canal, o que facilita a sua limpeza e manutenção.  Melhor controle do fluxo: Os canais de seção trapezoidal permitem um melhor controle do fluxo de água, pois sua geometria proporciona uma maior estabilidade do leito do canal, reduzindo a erosão e o assoreamento.  Versatilidade: Os canais de seção trapezoidal são bastante versáteis e podem ser utilizados em diversas aplicações, desde a irrigação de culturas agrícolas até a condução de água para usinas hidrelétricas. 3.2. Dimensionamento do canal de derivação A equação de Manning é uma das equações mais utilizadas para a determinação da vazão em canais abertos, como rios, córregos, canais de irrigação, entre outros. Ela foi desenvolvida pelo engenheiro hidráulico norte-americano Robert Manning em 1891 e é baseada na observação empírica da relação entre a rugosidade da superfície do canal e a velocidade da água. A equação de Manning é dado a seguir: Q=1 n A Rh 2 3 √I O coeficiente de rugosidade de Manning (n) é um parâmetro que leva em conta a rugosidade da superfície do canal, que pode ser influenciada por diversos fatores, como será adotado um concreto liso, porém já será adotado um concreto envelhecido, para já prever a passagem do tempo de uso do canal. Esse valor de n é determinado experimentalmente para cada tipo de canal e pode variar de acordo com as condições de operação. A equação de Manning é amplamente utilizada na prática da engenharia hidráulica para o dimensionamento de canais de irrigação, sistemas de drenagem, projetos de controle de enchentes, entre outros. É importante ressaltar que essa equação é baseada em simplificações e aproximações e que outras equações mais complexas, que levam em conta outros parâmetros. Os dados do canal podem ser calculados pela seguinte maneira, adotando uma seção de mínimo perímetro molhado: z=1 A= y 2(2√1+z 2−z)= y 2(2∙√1+1 2−1)=1,828 y 2 Rh= y 2 n=0,018 I=0,5 100=0,005m/m Q=8,28m 3/s Aplicando esses valores na equação de Manning: Q= 1 0,018 ∙1,828 y 2∙( y 2) 2 3 ∙√0,005=8,28m 3/s 4,5248 y 8 3=8,28m 3/s Portanto, a altura necessária do canal é igual a: y=1,25m E a largura do fundo e superficial é: b=2 y (√1+z 2−z)=2∙1,25∙(√1+1 2−1)=1,05m B=2 y√1+z 2=2∙1,25∙√1+1 2=3,55m Sendo o canal dimensionado, segue realizar as verificações. 3.3. Velocidade de escoamento A velocidade de escoamento em canais é um conceito importante na hidráulica, que se refere à velocidade com que a água flui em um canal aberto. A velocidade de escoamento é influenciada por vários fatores, incluindo a inclinação do canal, a rugosidade das paredes do canal, a vazão de água e as características do fluido. Em canais retangulares, a velocidade de escoamento é maior no centro do canal e diminui em direção às paredes. Isso ocorre porque a água tende a seguir a trajetória mais curta, que é o caminho central do canal. Já em canais circulares, a velocidade de escoamento é maior na superfície e menor no centro. A velocidade de escoamento em um canal pode ser calculada usando a equação de Manning-Strickler, que leva em consideração a inclinação do canal, a rugosidade das paredes, a vazão de água e a área molhada do canal. Outra equação comumente utilizada é a equação de Chezy, que relaciona a velocidade de escoamento com a raiz quadrada da energia cinética específica da água. É importante destacar que a velocidade de escoamento em um canal pode ter efeitos significativos na erosão do solo, na sedimentação e na qualidade da água. Portanto, é essencial que a velocidade de escoamento seja monitorada e controlada em projetos de engenharia hidráulica e ambiental. A área da seção transversal do canal pode ser calculada pela equação: A=1,828∙1,25 2=2,876m 2 E a velocidade de escoamento é obtido pela equação da continuidade: Q=VA 8,28=V ∙2,876 V =2,879m/s Para concreto as velocidades limites são as seguintes: 0,60m/s≤V ≤6,00m/s Portanto a verificação das dimensões e velocidade de escoamento no canal está aprovada e o canal está seguro. 3.4. Energia disponível A curva de energia disponível em canais é um gráfico que representa a energia total disponível em um determinado ponto ao longo do canal em relação à elevação da superfície da água nesse ponto. Essa curva é usada em engenharia hidráulica para entender e analisar o comportamento da água em um canal e para projetar estruturas hidráulicas, como comportas, barragens e usinas hidrelétricas. A energia total disponível em um ponto em um canal é a soma da energia cinética, energia potencial e energia de pressão da água nesse ponto. A energia cinética é a energia associada à velocidade da água, enquanto a energia potencial é a energia associada à elevação da água em relação a um ponto de referência. A energia de pressão é a energia associada à pressão da água no ponto em questão. A curva de energia disponível é uma curva contínua que varia ao longo do canal e pode apresentar diferentes formas, dependendo das características do canal e da vazão de água. Em canais com declive constante, a curva de energia disponível é uma linha reta. No entanto, em canais com declive variável, a curva de energia disponível apresenta uma forma curva, com o ponto mais baixo correspondendo à maior velocidade e menor elevação da água. A curva de energia disponível é usada para determinar a altura de queda disponível em um canal, que é a diferença entre a energia total disponível em um ponto e a energia total disponível em outro ponto abaixo. Essa altura de queda é uma medida importante para projetar estruturas hidráulicas, como turbinas hidráulicas em usinas hidrelétricas. A equação da curva de energia disponível é obtido por meio da equação de Bernoulli, da seguinte maneira: E= y+ V 2 2g Desenvolvendo a equação: E= y+( Q A) 2 2 g = y+ Q 2 2 g A 2= y+ 8,28 2 2∙9,81∙(1,828 y 2) 2 E= y+ 1,0457 y 4 Plotando tal equação: Gráfico 3 – Curva de energia disponível 0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Curva de Energia Disponível E (m) y (m) Fonte: Própria 3.5. Regime de escoamento O número de Froude é um parâmetro adimensional que é utilizado na hidráulica para descrever o comportamento de um fluido em movimento em relação a um obstáculo ou a uma mudança na geometria do canal. É uma relação entre as forças inerciais e as forças gravitacionais que atuam sobre a água, e seu valor é importante para determinar se o fluxo é subcrítico, crítico ou supercrítico. O número de Froude é calculado como a razão entre a velocidade do fluido e a raiz quadrada do produto da gravidade pelo comprimento característico do canal. O comprimento característico pode ser o raio hidráulico, a largura ou o diâmetro do canal, dependendo do tipo de fluxo. Quando o número de Froude é menor que 1, o fluxo é considerado subcrítico e a velocidade da água é insuficiente para superar a ação gravitacional, resultando em uma superfície livre relativamente plana. Quando o número de Froude é igual a 1, o fluxo é considerado crítico e a velocidade da água é suficiente para igualar a ação gravitacional, resultando em uma superfície livre curva. Quando o número de Froude é maior que 1, o fluxo é considerado supercrítico e a velocidade da água é suficiente para superar a ação gravitacional, resultando em uma superfície livre curva e elevada. O número de Froude é um parâmetro importante para o projeto e análise de estruturas hidráulicas, como barragens, comportas e pontes, bem como para a previsão de desastres naturais, como enchentes e deslizamentos de terra. Além disso, é utilizado em estudos de engenharia ambiental para avaliar o impacto da atividade humana nos cursos d'água e nos ecossistemas adjacentes. O cálculo do Número de Froude é pela seguinte equação: Fr= V √g y = 2,879 √9,81∙1,25=0,822 Portanto, o escoamento pode ser considerado subcrítico. 3.6. Desenhos técnicos do canal O canal foi desenhado pelo software AutoCAD, e a seção transversal é a seguinte: Figura 1 – Dimensões do canal Fonte: Própria 3.7. Custos associados Os custos do canal foram obtidos pelo site geradordepreços para a região de Maranhão, pois é onde o canal seria executado. O processo da previsão dos valores é pelas seguintes etapas, como mostrados nas figuras a seguir: Figura 2 – Dados de entrada Fonte: Própria Figura 3 – As paredes do canal podem ser consideradas como muros de concreto Fonte: Própria Gerando o relatório, tem-se: Planilha 1 – Preços dos insumos do canal Insumo Un Descrição Rend. Preço unitário Preço Insumo mt08ebr060aa m² Painéis metálicos de 30x90 cm, para sistema de escoramento e fôrmas para cortinas. 0,044 3825,94 168,34 mt08ebr035d Un Escora aprumadora metálica, telescópica, com extremidades articuladas, de até 4 m de comprimento. 0,089 91,79 8,17 mt08ebr080 Un Conjunto constituído por barra de ancoragem roscada de 5/8" de diâmetro, tubo distanciador de PVC e porcas tipo borboleta. 26,66 7 22,58 602,14 mt08dba010d l Agente desmoldante, à base de óleos especiais, emulsionante em água, para fôrmas metálicas, fenólicas ou de madeira. 0,200 4,37 0,87 mt07aco020d Un Separador certificado para cortinas. 8,000 0,16 1,28 mt07aco070f kg Aço em barras nervuradas, CA-50, de vários diâmetros, segundo ABNT NBR 7480. 51,00 0 11,45 583,95 mt08var050 kg Arame galvanizado para atar, de 1,30 mm de diâmetro. 0,650 3,63 2,36 mt10haf080pif m³ Concreto C30 classe de agressividade ambiental III e tipo de ambiente marinho, brita 2, consistência S160, dosado em central, com aditivo hidrófugo, segundo ABNT NBR 8953. 1,050 405,95 426,25 mq06bhe010 h Caminhão bomba estacionado na obra, para bombeamento de concreto. 0,176 668,17 117,60 mo044 h Montador de fôrmas. 2,632 20,99 55,25 mo091 h Ajudante de montador de fôrmas. 2,871 15,79 45,33 mo043 h Armador. 0,644 20,99 13,52 mo090 h Ajudante de armador. 0,820 15,79 12,95 mo045 h Oficial de trabalhos de concretagem. 0,073 20,99 1,53 mo092 h Ajudante de trabalhos concretagem. 0,308 15,79 4,86 % Custos diretos complementares 2,000 2044,40 40,89 Custo de manutenção decenal: R$ 83,41 nos primeiros 10 anos. Total: 2085,29 Fonte: Gerador de Preços Portanto, sabendo que o canal possui 180m de comprimento o custo total final, considerando mão de obra, material e equipamentos é igual a: Custototal=R $ 2.085,29∙180 Custototal=R $375.352,20 URB 227 Hidráulica Aplicada Profa. Tamara Souza Universidade Federal de Ouro Preto Escola de Minas Departamento de Engenharia Urbana Caso Base Projeto 2 Caracterização Fluvial e Dimensionamento de um Canal de Derivação Caracterização Fluvial e Dimensionamento de um Canal de Derivação 1. Caracterização Fluvial ❑ Vazões Médias, Máximas e Mínimas ❑ Perfil Transversal ❑ Cotas ❑ Curva-Chave 2. Canal de Derivação ❑ Dimensionamento do canal de derivação a partir da vazão que será uma % da Q do rio ❑ Escolha do material, taludes (se houver) ❑ Energia disponível ❑ Regime de escoamento ❑ Desenhos técnicos ❑ Custos associados Projeto 1 (Grupo 1) • Corpo Hídrico: RIO MEARIM • Município: BACABAL-MA • Estação Fluviométrica: 33290000 • Comprimento horizontal do canal de derivação: 180 m • Declividade: 0,5% • Vazão máxima a ser transportada: 8% da vazão mínima média. UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA URBANA CARACTERIZAÇÃO FLUVIAL E DIMENSIONAMENTO DE UM CANAL DE DERIVAÇÃO Nome do primeiro autor e-mail desse autor Nome do segundo autor e-mail desse autor Mesmo formato para outros autores, caso haja e-mail desse autor INSTRUÇÕES PARA O TRABALHO 1. CONTEXTUALIZAÇÃO DO PROJETO Breve texto sobre a localidade e objetivos do projeto. 2. CARACTERIZAÇÃO FLUVIAL 2.1. Perfil Transversal Escolher no mínimo duas datas, traçar o perfil transversal e realizar uma discussão a respeito de possíveis alterações na calha do rio bem como sua ocupação em período de cheia. 2.2. Curva-Chave A partir do período selecionado para o estudo, explicitar as curvas-chave da estação fluviométrica. 2.3. Cotas Explicitar graficamente as cotas que irão influenciar a obra do canal. Desconsiderar as falhas para realização das médias. 2.4. Vazões Médias, Máximas e Mínimas Gráficos devidamente interpretados, com os valores médios de cada uma das vazões. Desconsiderar as falhas para realização das médias. 3. DIMENSIONAMENTO DO CANAL DE DERIVAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA URBANA 3.1. Aspectos técnicos do canal Escolha do material, geometria e demais aspectos técnicos, devidamente justificados. 3.2. Dimensionamento do canal de derivação A partir dos princípios do escoamento uniforme, realizar o dimensionamento do canal, deixando explícito toda sequência lógica de raciocínio, equações e verificações; 3.3. Velocidade de escoamento Conferência da velocidade máxima de escoamento e se há compatibilidade entre o material escolhido e a velocidade. 3.4. Energia disponível Construção da curva de energia disponível, com a vazão de projeto. 3.5. Regime de escoamento Cálculo do Número de Froude e discussão sobre as condições do regime de escoamento 3.6. Desenhos técnicos do canal (1) Detalhar as dimensões do canal e seu entorno nos desenhos. 3.7. Custos associados (2) Explicitar o volume de corte, estimar volume de revestimento e seus custos. (1) Usar qualquer software de desenho e usar técnicas de desenho e escala (2) Não é obrigatório incluir mão de obra para instalação ou obras civis (apenas material). Entretanto, é uma pesquisa extremamente importante se tratando de canais, e portanto, desejável para estimativa do custo total da obra neste contexto.