·

Cursos Gerais ·

Cálculo 3

Send your question to AI and receive an answer instantly

Ask Question

Preview text

1 Calcule o integral de linha c x2 3y dx y2 2x dy se C x t y t2 1 0 t 1 2 Calcule o integral de linha c xy z3 ds ao longo da hélice que é representada pelas equações paramétricas x cos t y sen t z t 0 t π 3 Determine c 2xy dx x2 y2 dy ao longo do arco circular dado por x cos t y sen t 0 t π2 3 c 2xy dx x2 y2 dy x cos t y sen t 0 t π2 dx sen t dt dy cos t dt 0π2 2 cos t sen t sen t dt cos2 t sen2 t cos t dt 0π2 2 sen2 t cos t dt cos t dt 0π2 2 u2 du sen t 2 0 π44 2 π44 2 u33 01 sinπ2 sen 0 23 10 1 23 13 1 x2 y 3 y2 dx y2 2x dy C x t y t2 1 dx dt dy 2t dt 0 t 1 Substitude now integral 01 t2t2 1 3 t2 12 dt 01 t2 12 2t 2t dt 01 t4 t2 3t4 6t2 3 dt 01 t4 2t2 1 4t2 dt 01 4t4 7t2 3 dt 01 t4 6t2 1 dt 4t55 7t33 3t01 t55 2t3 t01 45 73 3 15 2 1 3 185 103 375 103 11115 7 615 7 25 2 C xy z3 ds x cos t y sin t z t 0 t π ct cost sent t ds ct dt ct sent cost 1 ct sent2 cost2 12 11 2 dt 0π xnt cost t3 2 dt 2 0π sent cost dt 0π t3 dt 1 0π sent cost dt u du u22 sin2 t2 0π 0 usent ducost dt 2 0π t3 dt t44 0π π44