·

Engenharia Civil ·

Resistência dos Materiais

Send your question to AI and receive an answer instantly

Ask Question

Preview text

1.42 - 27\nA iluminação a 250N é sustentada por 3 cabos interligados por um anel. \nA Determinar qual dos cabos está submetido a maior tensão normal média e calcular seu valor. Considele θ = 30°. O diâmetro do cabo até é dado na figura.\n\nd D\n \n\t\t\t\t\t\t\t\t\t\t\thr\n \n\t\t\t\t\t\t \n\t\t\t \nα= 30 \n\t\t\t \n\t\t\t \n\t\t\t \n \nFz = 250N\n\t\t\t \n\t\t\t \n\t\t\t \n\r \nZFt = 350N\nm = 25k\n\rightarrow° = 10m\nα = 30°\n\t\t\t\t\t\t\t\t\t\t\td\n \n\t\t\t\t\t\t\t\t\t\t\t\n \n\t\t\t\t\t\t\t\t\t\t\t\nΣFx=0\n-NAD cos 45° - NAC cos 30°=0\nNAD=... \nr\n\t\t\t \n\t\t\nΣFy=0\n-NAD sen 45° - NAC sen 30= 250N=0\nNAD1 + NAC1 = 250N\nr\n\t\t\t \n\t\t\t \n \nNAD = √(250N - NAC)\n\t\t\t \n\t\t\t \n\t\t\t \n\t\t\tr\n \nPanAmericana ΣFx=0\n-NAD cos^2 45° + NAC cos^2 30°= 0\n\tNAD = NAC√3\n \nNAD=√(186,0127)\nNAD= 2,414ü7327\nNAD= 183,0127N\nΣFy=0\nNAD{sin}2 45° + NAC{sin}2 30°-250N=0\nNAD1 + NAC1 - 250N\n√NAD = √(250N - NAC)\n\t\t\t\t \n√NAD = √(250N - NAC) \n√NAD = √250N - √NAC \n√(500)\nΣNAD = 1\n\t\t\t\t \t\t\t\t \n\t\t\t\t \nΣNA = 183,0127N \n\t\t\t\t\t\t\t← 3,8637 146 - Conclusão do problema 1.42 para θ = 45°\nσAD (7,5mm) = π(7,5)² = 44,1876 mm²\nADPC (0mm) = π(6)³/4 = 28,27±0,43\nσPC = 183,0127N\n 2 29,943 mm²\nσAD = 224,1439N = 5,97636 N/Pa\nNAB = 250N\nABDA (1mm) = 63.6173 mm²\nσAB = 250N / 63,6173 mm²\n= 3,92986 N/Pa\n\t\t\t\t NAD = 5º + NAD ( 45º - 250 N = 0\nNAD = 1 + NAD ( 1 = 250\n√2 \n√2\nNAD1 = √2 250N - NAD1\nNAD = 1/2\n( 250N - NAD1 )\n\nNAD = √2\nNAD = √2 250 - NAD\nNAD = √2\nNAD = √2 \nNAD = (√2 250 - √2 NAD\nNAD = 500N\nNAD1 = 250N - NAD1\nNAD1 + √2 NAD1 = 500N\n2√2 NAD = 500N\nNAD = 500N\n\nNAC = 500N - √2 NAD\n\n- Años\n\nPAD = 441786 mm²\nPAD = 4.6879 MPa\nPAD = 4.0014 MPa\nPAC = 28.2743 mm²\nPAC = 4.5249\nPAD = 63.6173 mm²\nPAD = 3.9297 MPa