2
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
13
Cálculo 2
UNIVALI
4
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
46
Cálculo 2
UNIVALI
66
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
Texto de pré-visualização
UNIVERSIDADE DO VALE DE ITAJAÍ UNIVALI M2A1 Cálculo II NID Peso 20 30062022 Prof Dr Henri Stuker AcadêmicoaCurso AcadêmicoaCurso ORIENTAÇÕES Entregar junto com a resolução das questões esta página com nome e curso dos componentes do grupo Até 2 acadêmicos Apresentar os resultados com todos os cálculos intermediários de forma clara e organizada O não cumprimento desta observação acarreta perda de pontos Cada item vale 1 ponto Os cálculos podem ser a lápis mas os resultados devem ser apresentados A CANETA DEVOLUÇÃO A devolutiva da avaliação deve ser no início da aula do dia 07072022 I Determinar o volume do sólido gerado pela rotação delimitada pelos gráficos das equações dadas a 𝑦 cos 𝑥 𝑦 𝑠𝑒𝑛 𝑥 𝑥 0 𝑒 𝑥 𝜋 4 Rotação em torno do eixo 𝑥 b 𝑦 𝑥2 𝑦 𝑥3 Rotação em torno do eixo 𝑦 II Calcular a área da superfície gerada pela rotação do arco de curva dado em torno do eixo indicado Fórmula 𝐴 2𝜋 𝑓𝑥1 𝑓𝑥2𝑑𝑥 𝑏 𝑎 a 𝑦 4 𝑥2 0 𝑥 1 Rotação em torno do eixo 𝑥 b 𝑦 𝑥5 2 0 𝑥 2 Rotação em torno do eixo 𝑦 𝐹Ó𝑅𝑀𝑈𝐿𝐴 𝑉 𝜋 𝑓𝑥2𝑑𝑥 𝑏 𝑎 III Demarcar o ponto 3 𝜋 3 no sistema de coordenadas polares e encontrar suas coordenadas cartesianas IV Transformar a equação 𝑦23 𝑥23 𝑥3 0 para coordenadas polares V Transformar a equação 𝑟 2 𝑠𝑒𝑛 𝜃cos𝜃 para coordenadas cartesianas VI Identificar a figura e traçar o gráfico da curva dada em coordenadas polares 𝑟 2 2𝑠𝑒𝑛𝜃 VII Identificar a figura e encontrar o comprimento do arco da curva dada por 𝑟 𝑒2𝜃 VIII Encontrar a área interna ao círculo 𝑟 4 e exterior à cardioide 𝑟 41 𝑐𝑜𝑠𝜃
2
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
13
Cálculo 2
UNIVALI
4
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
46
Cálculo 2
UNIVALI
66
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
1
Cálculo 2
UNIVALI
Texto de pré-visualização
UNIVERSIDADE DO VALE DE ITAJAÍ UNIVALI M2A1 Cálculo II NID Peso 20 30062022 Prof Dr Henri Stuker AcadêmicoaCurso AcadêmicoaCurso ORIENTAÇÕES Entregar junto com a resolução das questões esta página com nome e curso dos componentes do grupo Até 2 acadêmicos Apresentar os resultados com todos os cálculos intermediários de forma clara e organizada O não cumprimento desta observação acarreta perda de pontos Cada item vale 1 ponto Os cálculos podem ser a lápis mas os resultados devem ser apresentados A CANETA DEVOLUÇÃO A devolutiva da avaliação deve ser no início da aula do dia 07072022 I Determinar o volume do sólido gerado pela rotação delimitada pelos gráficos das equações dadas a 𝑦 cos 𝑥 𝑦 𝑠𝑒𝑛 𝑥 𝑥 0 𝑒 𝑥 𝜋 4 Rotação em torno do eixo 𝑥 b 𝑦 𝑥2 𝑦 𝑥3 Rotação em torno do eixo 𝑦 II Calcular a área da superfície gerada pela rotação do arco de curva dado em torno do eixo indicado Fórmula 𝐴 2𝜋 𝑓𝑥1 𝑓𝑥2𝑑𝑥 𝑏 𝑎 a 𝑦 4 𝑥2 0 𝑥 1 Rotação em torno do eixo 𝑥 b 𝑦 𝑥5 2 0 𝑥 2 Rotação em torno do eixo 𝑦 𝐹Ó𝑅𝑀𝑈𝐿𝐴 𝑉 𝜋 𝑓𝑥2𝑑𝑥 𝑏 𝑎 III Demarcar o ponto 3 𝜋 3 no sistema de coordenadas polares e encontrar suas coordenadas cartesianas IV Transformar a equação 𝑦23 𝑥23 𝑥3 0 para coordenadas polares V Transformar a equação 𝑟 2 𝑠𝑒𝑛 𝜃cos𝜃 para coordenadas cartesianas VI Identificar a figura e traçar o gráfico da curva dada em coordenadas polares 𝑟 2 2𝑠𝑒𝑛𝜃 VII Identificar a figura e encontrar o comprimento do arco da curva dada por 𝑟 𝑒2𝜃 VIII Encontrar a área interna ao círculo 𝑟 4 e exterior à cardioide 𝑟 41 𝑐𝑜𝑠𝜃