·
Engenharia Civil ·
Cálculo 1
· 2022/2
Envie sua pergunta para a IA e receba a resposta na hora
Recomendado para você
1
Lista Exercícios Objetivos-2021 2
Cálculo 1
UFPR
7
Lista 2-2023-2
Cálculo 1
UFPR
28
Lista de Exercícios 2 de Cálculo 2 e Questoes de Provas Antigas-2023 1
Cálculo 1
UFPR
4
Lista 1 - Módulo 2 - 2024-1
Cálculo 1
UFPR
1
Lista de Exercícios 1-2022 2
Cálculo 1
UFPR
2
Questao 1 e 7 Teste Online-2021 2
Cálculo 1
UFPR
5
Lista 2 - Módulo 2 - 2024-1
Cálculo 1
UFPR
1
Lista Exercícios Objetivos-2021 2
Cálculo 1
UFPR
15
Slide Mudança de Variaveis em Integrais Duplas-2022 1
Cálculo 1
UFPR
1
Lista 2 Limite Continuidade Calc2-2022 2
Cálculo 1
UFPR
Texto de pré-visualização
Vale 50,00 ponto(s). Marcar questão Considere a função f(x, y) = log(C - 5x^2 - 5y^2). Qual é o maior valor do inteiro C tal que o ponto (2, 2) está fora do domínio de f? Resposta: Questão 2 Ainda não respondida Vale 50,00 ponto(s). Marcar questão Da lista embaixo, assinale aquelas funções f(x, y) tais que lim_{(x,y)→(0,0)} f(x, y) não existe. Observação: respostas erradas são penalizadas. f(x, y) = \frac{5x^3 - xsen^2(y)}{x^2 + 3y^2} f(x, y) = \frac{2ysen(x)}{3x^2 + 2y^2} t(x,y) = x^3 + 4xy + y^2 \frac{∂t}{∂x} = 3x^2 + 4y \frac{∂t}{∂x}(1,1) = 7 \frac{∂t}{∂y} = 4x + 2y \frac{∂t}{∂y}(1,1) = 6 z - 6 = 7(x - 1) + 6(y - 1) z - 6 = 7x - 7 + 6y - 6 7x + 6y - z - 7 = 0 n = (7,6,-1) (a,7,7) . (7,6,-1) = 0 7a + 42 - 7 = 0 7a + 35 = 0 7a = -35 a = -5 g(t) = t(4t+3,7t^2) g'(0) = 32 \frac{∂t(3,0)}{∂x} x = 4t + 3 \frac{dx}{dt} = 4 y = 7t^2 \frac{dy}{dt} = 14t g(0) = t(3,0) g'(t) = \frac{∂t(3,0)}{∂x} . 4 + \frac{∂t(3,0)}{∂y} . 14t g'(0) = 4\frac{∂t(3,0)}{∂x} 4\frac{∂t}{∂x} = 32 \frac{∂t(3,0)}{∂x} = 8
Envie sua pergunta para a IA e receba a resposta na hora
Recomendado para você
1
Lista Exercícios Objetivos-2021 2
Cálculo 1
UFPR
7
Lista 2-2023-2
Cálculo 1
UFPR
28
Lista de Exercícios 2 de Cálculo 2 e Questoes de Provas Antigas-2023 1
Cálculo 1
UFPR
4
Lista 1 - Módulo 2 - 2024-1
Cálculo 1
UFPR
1
Lista de Exercícios 1-2022 2
Cálculo 1
UFPR
2
Questao 1 e 7 Teste Online-2021 2
Cálculo 1
UFPR
5
Lista 2 - Módulo 2 - 2024-1
Cálculo 1
UFPR
1
Lista Exercícios Objetivos-2021 2
Cálculo 1
UFPR
15
Slide Mudança de Variaveis em Integrais Duplas-2022 1
Cálculo 1
UFPR
1
Lista 2 Limite Continuidade Calc2-2022 2
Cálculo 1
UFPR
Texto de pré-visualização
Vale 50,00 ponto(s). Marcar questão Considere a função f(x, y) = log(C - 5x^2 - 5y^2). Qual é o maior valor do inteiro C tal que o ponto (2, 2) está fora do domínio de f? Resposta: Questão 2 Ainda não respondida Vale 50,00 ponto(s). Marcar questão Da lista embaixo, assinale aquelas funções f(x, y) tais que lim_{(x,y)→(0,0)} f(x, y) não existe. Observação: respostas erradas são penalizadas. f(x, y) = \frac{5x^3 - xsen^2(y)}{x^2 + 3y^2} f(x, y) = \frac{2ysen(x)}{3x^2 + 2y^2} t(x,y) = x^3 + 4xy + y^2 \frac{∂t}{∂x} = 3x^2 + 4y \frac{∂t}{∂x}(1,1) = 7 \frac{∂t}{∂y} = 4x + 2y \frac{∂t}{∂y}(1,1) = 6 z - 6 = 7(x - 1) + 6(y - 1) z - 6 = 7x - 7 + 6y - 6 7x + 6y - z - 7 = 0 n = (7,6,-1) (a,7,7) . (7,6,-1) = 0 7a + 42 - 7 = 0 7a + 35 = 0 7a = -35 a = -5 g(t) = t(4t+3,7t^2) g'(0) = 32 \frac{∂t(3,0)}{∂x} x = 4t + 3 \frac{dx}{dt} = 4 y = 7t^2 \frac{dy}{dt} = 14t g(0) = t(3,0) g'(t) = \frac{∂t(3,0)}{∂x} . 4 + \frac{∂t(3,0)}{∂y} . 14t g'(0) = 4\frac{∂t(3,0)}{∂x} 4\frac{∂t}{∂x} = 32 \frac{∂t(3,0)}{∂x} = 8