·
Cursos Gerais ·
Álgebra Linear
Send your question to AI and receive an answer instantly
Recommended for you
4
Exercícios de Álgebra Linear
Álgebra Linear
UMG
5
P3-algebralinear-resposta-prof Chileno -pucgo
Álgebra Linear
UMG
11
Algebra Linear e Suas Aplicações -ltc 1997
Álgebra Linear
UMG
3
Genética de Populações - Resistência a Inseticida e Herança Genética
Álgebra Linear
UMG
6
Lista de Exercicios
Álgebra Linear
UMG
5
Exercicios
Álgebra Linear
UMG
1
Matrizes Determinantes e Sistemas Lineares - Resolucao de Problemas e Aplicacoes
Álgebra Linear
UMG
5
Calculando a Variância para Dados Brutos
Álgebra Linear
UMG
1
Prova uma Equcao de Vetores
Álgebra Linear
UMG
1
Transformacoes Lineares e Subespacos - Demonstracoes e Exercicios
Álgebra Linear
UMG
Preview text
Lista 01\nData da lista: 03/04/2020\nProfessor: Lucas Penha\nAlgebra Linear\n1. Dadas as matrizes\nA = [ 1 2 3 2 1 -1 ], B = [ -2 0 1 3 0 1 ], C = [ -1 3 0 2 5 0 0 1 ], D = [ 1 3 0 2 5 0 0 1 ],\nencontre:\n(a) A+B\n(b) A · C\n(c) B · D\n(d) A · B\n(e) -A\n(f) πA\n(g) A + C\n(h) At\n2. Seja A = [ 2 2x - 1 0 x2 ] . Se At = A então x é igual a?\n3. Se A é uma matriz simétrica, calcule A - .\n4. Se é uma matriz diagonal, então é?\n5. Verdadeiro ou falso?\n(a) ;\n(b) ;\n(c) Se , então ou ;\n(d) );\n(e) Se A e B são matrizes simétricas, então AB = BA.\n
Send your question to AI and receive an answer instantly
Recommended for you
4
Exercícios de Álgebra Linear
Álgebra Linear
UMG
5
P3-algebralinear-resposta-prof Chileno -pucgo
Álgebra Linear
UMG
11
Algebra Linear e Suas Aplicações -ltc 1997
Álgebra Linear
UMG
3
Genética de Populações - Resistência a Inseticida e Herança Genética
Álgebra Linear
UMG
6
Lista de Exercicios
Álgebra Linear
UMG
5
Exercicios
Álgebra Linear
UMG
1
Matrizes Determinantes e Sistemas Lineares - Resolucao de Problemas e Aplicacoes
Álgebra Linear
UMG
5
Calculando a Variância para Dados Brutos
Álgebra Linear
UMG
1
Prova uma Equcao de Vetores
Álgebra Linear
UMG
1
Transformacoes Lineares e Subespacos - Demonstracoes e Exercicios
Álgebra Linear
UMG
Preview text
Lista 01\nData da lista: 03/04/2020\nProfessor: Lucas Penha\nAlgebra Linear\n1. Dadas as matrizes\nA = [ 1 2 3 2 1 -1 ], B = [ -2 0 1 3 0 1 ], C = [ -1 3 0 2 5 0 0 1 ], D = [ 1 3 0 2 5 0 0 1 ],\nencontre:\n(a) A+B\n(b) A · C\n(c) B · D\n(d) A · B\n(e) -A\n(f) πA\n(g) A + C\n(h) At\n2. Seja A = [ 2 2x - 1 0 x2 ] . Se At = A então x é igual a?\n3. Se A é uma matriz simétrica, calcule A - .\n4. Se é uma matriz diagonal, então é?\n5. Verdadeiro ou falso?\n(a) ;\n(b) ;\n(c) Se , então ou ;\n(d) );\n(e) Se A e B são matrizes simétricas, então AB = BA.\n