·
Cursos Gerais ·
Modelagem e Simulação de Processos
Send your question to AI and receive an answer instantly
Recommended for you
2
Trabalho Simulação Estrutural
Modelagem e Simulação de Processos
UMG
12
Processos Estocásticos e Cadeias de Markov - Técnicas de Simulação e Otimização
Modelagem e Simulação de Processos
UMG
29
Sistemas de Controle Introducao e Tipos Malha Aberta e Fechada
Modelagem e Simulação de Processos
UMG
1
Avaliação AV e AVS - Simulação de Monte Carlo e Inteligência Artificial
Modelagem e Simulação de Processos
UMG
25
Transformada de Laplace - Revisao Metodos Vantagens e Aplicacoes
Modelagem e Simulação de Processos
UMG
11
Atividade de Modelagem
Modelagem e Simulação de Processos
UMG
27
Modelagem Matematica de Sistemas Dinamicos - Equacoes de Estado e Espaco de Estados
Modelagem e Simulação de Processos
UMG
11
Lista de Exercicios Resolvidos - Tecnicas de Simulacao e Otimizacao - Modelagem e Programacao Linear
Modelagem e Simulação de Processos
UMG
1
Fluxograma de Processos
Modelagem e Simulação de Processos
UMG
2
Planejamento e Controle da Produção: Ementa e Objetivos
Modelagem e Simulação de Processos
UMG
Preview text
1ª A Senhora Alzira possui uma loja de bolos que apresenta o seguinte problema de estoque A loja produz determinado tipo de bolo que pode ser fabricado diariamente Façamos que D₁ D₂ representem a de demanda por esse tipo bolo o número de unidades que seriam vendidas caso o estoque não estivesse esgotado durante o primeiro dia o segundo dia respectivamente de modo que a variável aleatória Dₜ para t 1 2 seja Dₜ número de bolos que seriam vendidos no dia t caso o estoque não estivesse esgotado Esse número inclui vendas perdidas quando o estoque estiver esgotado Supõemse que Dₜ sejam variáveis aleatórias independentes e identicamente distribuídas com uma Distribuição de Poisson com média 15 Façamos que X₀ represente o número de bolos disponíveis aos clientes no início X₁ o número de bolos disponíveis no final do dia 2 e assim por diante de modo que a variável aleatória Xₜ para t 0 1 2 seja Xₜ número de bolos disponíveis no final do dia t Suponha que X₀ 3 de modo que o dia 1 comece com três bolos disponíveis Xₜ X₀ X₁ X₂ é um processo estocástico no qual a variável aleatória Xₜ representa o estado do sistema no instante t Como proprietária da loja Dona Alzira gostaria de saber mais sobre como o estado desse processo estocástico evolui ao longo do tempo usando como política de fabricação os seguintes critérios No final de cada dia t à noite a loja prepara os bolos a tempo quando da próxima abertura da loja no dia seguinte Se X1 0 produz três bolos Se X1 0 não produz nenhum bolo O nível de estoque flutua entre um mínimo de nenhum bolo e um máximo de três bolos de modo que os estados possíveis do sistema no instante t o final do dia t sejam 0 1 2 ou 3 bolos disponíveis A partir das informações apresentadas monte um modelo considerando os princípios da Cadeia de Markov e faça todas as análises necessárias Sabendo que você foi Disciplina Modelagem de Sistemas Discretos Profª Izabel Saldanha Matsuzaki Universidade Veiga de Almeida UVA Curso de Graduação em Engenharia de Produção convidado a contribuir neste planejamento apresente uma proposição de modelo caso o estoque inicial passe a ser 4 bolos
Send your question to AI and receive an answer instantly
Recommended for you
2
Trabalho Simulação Estrutural
Modelagem e Simulação de Processos
UMG
12
Processos Estocásticos e Cadeias de Markov - Técnicas de Simulação e Otimização
Modelagem e Simulação de Processos
UMG
29
Sistemas de Controle Introducao e Tipos Malha Aberta e Fechada
Modelagem e Simulação de Processos
UMG
1
Avaliação AV e AVS - Simulação de Monte Carlo e Inteligência Artificial
Modelagem e Simulação de Processos
UMG
25
Transformada de Laplace - Revisao Metodos Vantagens e Aplicacoes
Modelagem e Simulação de Processos
UMG
11
Atividade de Modelagem
Modelagem e Simulação de Processos
UMG
27
Modelagem Matematica de Sistemas Dinamicos - Equacoes de Estado e Espaco de Estados
Modelagem e Simulação de Processos
UMG
11
Lista de Exercicios Resolvidos - Tecnicas de Simulacao e Otimizacao - Modelagem e Programacao Linear
Modelagem e Simulação de Processos
UMG
1
Fluxograma de Processos
Modelagem e Simulação de Processos
UMG
2
Planejamento e Controle da Produção: Ementa e Objetivos
Modelagem e Simulação de Processos
UMG
Preview text
1ª A Senhora Alzira possui uma loja de bolos que apresenta o seguinte problema de estoque A loja produz determinado tipo de bolo que pode ser fabricado diariamente Façamos que D₁ D₂ representem a de demanda por esse tipo bolo o número de unidades que seriam vendidas caso o estoque não estivesse esgotado durante o primeiro dia o segundo dia respectivamente de modo que a variável aleatória Dₜ para t 1 2 seja Dₜ número de bolos que seriam vendidos no dia t caso o estoque não estivesse esgotado Esse número inclui vendas perdidas quando o estoque estiver esgotado Supõemse que Dₜ sejam variáveis aleatórias independentes e identicamente distribuídas com uma Distribuição de Poisson com média 15 Façamos que X₀ represente o número de bolos disponíveis aos clientes no início X₁ o número de bolos disponíveis no final do dia 2 e assim por diante de modo que a variável aleatória Xₜ para t 0 1 2 seja Xₜ número de bolos disponíveis no final do dia t Suponha que X₀ 3 de modo que o dia 1 comece com três bolos disponíveis Xₜ X₀ X₁ X₂ é um processo estocástico no qual a variável aleatória Xₜ representa o estado do sistema no instante t Como proprietária da loja Dona Alzira gostaria de saber mais sobre como o estado desse processo estocástico evolui ao longo do tempo usando como política de fabricação os seguintes critérios No final de cada dia t à noite a loja prepara os bolos a tempo quando da próxima abertura da loja no dia seguinte Se X1 0 produz três bolos Se X1 0 não produz nenhum bolo O nível de estoque flutua entre um mínimo de nenhum bolo e um máximo de três bolos de modo que os estados possíveis do sistema no instante t o final do dia t sejam 0 1 2 ou 3 bolos disponíveis A partir das informações apresentadas monte um modelo considerando os princípios da Cadeia de Markov e faça todas as análises necessárias Sabendo que você foi Disciplina Modelagem de Sistemas Discretos Profª Izabel Saldanha Matsuzaki Universidade Veiga de Almeida UVA Curso de Graduação em Engenharia de Produção convidado a contribuir neste planejamento apresente uma proposição de modelo caso o estoque inicial passe a ser 4 bolos