·

Engenharia Elétrica ·

Sistemas de Controle

Send your question to AI and receive an answer instantly

Ask Question

Preview text

Table A1 Laplace Transform Pairs Cf Od 1 1 4 u n 123 n vee n 1 ao s n fe eu tL sta 1 7 te eh ee 1 1 at 1 ft e 123 8 n iy n te n 123 ee s ay w 10 in wt F ep s 11 t ee ee eee w 12 sinh wt TF ef oe s 13 hot ee eee 1 1 14 1e a ss a 1 1 15 at bt 1 S 16 het at ee ef peel s as b 1 1 1 17 11 be a Al ape ae ss as b continues on next page Appendix A Laplace Transform Tables 863 Table A1 continued 1 1 18 e ate 8 terme e 1 1 19 sat1e a ae pe ee ay sta w sta w 22 On ptm sing VI Ct 0 1 ws e sina V12 s 28 w 1 sinw V1 2t V1I s 23 tan v1 s 28 w g 01 0 72 1 1 e sinw V1 2t Viape Sint W 24 1 72 tan S ss 28 w 01 0 72 2 ss 3 ss o 2 3 So 1 s 2 2 So 30 cose tcost wt 5 Ss w3 wy s wis 3 1 s 31 sinwt wt cos at 20 s w 864 Appendix A Laplace Transform Tables Table A2 Properties of Laplace Transforms EL Af t AFs AW Al Als BGs se 9 sFs f0 4 g Fro sFs sf0O fO L dt n n k1 5 J ro sFs 2s F0 where ft F0 F a of frow74 fro F n 2 Joona 2 3 sal fro F pe fia ee roa lim Fs if roa exists glef Fs a Li ft alt a eFs a0 aFs tf t ef0 5 FO Lleft 1 Fs n 123 100 J Foyas if lim F0 exists af 2 arta ol pe efile ar FsFs epost sr FUvGls pap Appendix A Laplace Transform Tables 865 Finally we present two frequently used theorems together with Laplace transforms of the pulse function and impulse function Initial value theorem f0 Jim ft lim sFs Final value theorem fco jim ft lim sFs Pulse function A A A A th1t1t Li ft e ft ts t ts t t F ios ys Impulse function WY A Wj A Sto gt tim 7 for0 t fp gt lim 4 1e d 0 fort 0t t ad e dto lim ty 0 d t dty tos A s 866 Appendix A Laplace Transform Tables