• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia Mecânica ·

Introdução à Mecânica dos Sólidos

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Questões Resolvidas - Diagramas de Esforço Cortante - Intro Mecsol 2021-2

6

Questões Resolvidas - Diagramas de Esforço Cortante - Intro Mecsol 2021-2

Introdução à Mecânica dos Sólidos

UFMG

Exercício Resolvido - Tensão Máxima de Tração e Compressão - Intro Mecsol

7

Exercício Resolvido - Tensão Máxima de Tração e Compressão - Intro Mecsol

Introdução à Mecânica dos Sólidos

UFMG

Quiz 2 - Introdução à Mecânica dos Sólidos

5

Quiz 2 - Introdução à Mecânica dos Sólidos

Introdução à Mecânica dos Sólidos

UFMG

P1 - Introdução à Mecânica dos Sólidos

7

P1 - Introdução à Mecânica dos Sólidos

Introdução à Mecânica dos Sólidos

UFMG

Exercícios - Introdução à Mecânica dos Sólidos 2022 1

1

Exercícios - Introdução à Mecânica dos Sólidos 2022 1

Introdução à Mecânica dos Sólidos

UFMG

P1 - Introdução à Mecânica dos Sólidos

7

P1 - Introdução à Mecânica dos Sólidos

Introdução à Mecânica dos Sólidos

UFMG

Exercícios - Introd à Mecânica dos Sólidos - 2024-1

14

Exercícios - Introd à Mecânica dos Sólidos - 2024-1

Introdução à Mecânica dos Sólidos

UFMG

Lista 3 - Mecânica dos Sólidos 2022-1

2

Lista 3 - Mecânica dos Sólidos 2022-1

Introdução à Mecânica dos Sólidos

UFMG

P2 - Introdução à Mecânica dos Sólidos

6

P2 - Introdução à Mecânica dos Sólidos

Introdução à Mecânica dos Sólidos

UFMG

Exercícios - Introdução à Mecânica dos Sólidos - 2023-2

1

Exercícios - Introdução à Mecânica dos Sólidos - 2023-2

Introdução à Mecânica dos Sólidos

UFMG

Texto de pré-visualização

ℎ = 300 mm 𝐿𝐿 = 4,9 m 1) Deformação fibra inferior (DCL) Problema 5.1 Determinar a curvatura, o raio de curvatura e a deflexão no centro 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 0,00125 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌 + ℎ 2 (2𝜃𝜃) − 𝜌𝜌 (2𝜃𝜃) 𝜌𝜌 (2𝜃𝜃) 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌 + ℎ 2 − 𝜌𝜌 𝜌𝜌 = 𝜌𝜌 = ⁄ ℎ 2 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = ⁄ 300 2 0,00125 = ⁄ 300 2 0,00125 = 150 0,00125 = 120000 mm = 120 m 𝜅𝜅 = 1 𝜌𝜌 = 1 120 = 0,00833 = 8,33 × 10−3m−1 Raio de curvatura Curvatura 𝜌𝜌 𝜌𝜌 + ℎ 2 ⁄ ℎ 2 ⁄ ℎ 2 ⁄ ℎ 2 𝜌𝜌 𝐿𝐿/2 𝐿𝐿/2 𝜃𝜃 𝜃𝜃 ℎ = 300 mm 𝐿𝐿 = 4,9 m Problema 5.1 Determinar a curvatura, o raio de curvatura e a deflexão no centro 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 0,00125 2) Deflexão máxima (centro) 𝜌𝜌 𝜌𝜌 𝜌𝜌 cos 𝜃𝜃 δ 𝛿𝛿 = 𝜌𝜌 − 𝜌𝜌 cos 𝜃𝜃 𝜌𝜌 𝛿𝛿 = 𝜌𝜌(1 − cos 𝜃𝜃) sin 𝜃𝜃 = ⁄ 𝐿𝐿 2 𝜌𝜌 ≈ 𝜃𝜃 Pequenas deformações: 𝜃𝜃 = ⁄ 4,9 2 120 = 0,0204 rad = 1,169° cos 𝜃𝜃 = cos 1,169° = 0,99979 𝛿𝛿 = 𝜌𝜌 1 − cos 𝜃𝜃 = (120)(1 − 0,9979) 𝛿𝛿 = (120)(0,000208) = 0,02496 m 𝛿𝛿 ≅ 25 mm

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Questões Resolvidas - Diagramas de Esforço Cortante - Intro Mecsol 2021-2

6

Questões Resolvidas - Diagramas de Esforço Cortante - Intro Mecsol 2021-2

Introdução à Mecânica dos Sólidos

UFMG

Exercício Resolvido - Tensão Máxima de Tração e Compressão - Intro Mecsol

7

Exercício Resolvido - Tensão Máxima de Tração e Compressão - Intro Mecsol

Introdução à Mecânica dos Sólidos

UFMG

Quiz 2 - Introdução à Mecânica dos Sólidos

5

Quiz 2 - Introdução à Mecânica dos Sólidos

Introdução à Mecânica dos Sólidos

UFMG

P1 - Introdução à Mecânica dos Sólidos

7

P1 - Introdução à Mecânica dos Sólidos

Introdução à Mecânica dos Sólidos

UFMG

Exercícios - Introdução à Mecânica dos Sólidos 2022 1

1

Exercícios - Introdução à Mecânica dos Sólidos 2022 1

Introdução à Mecânica dos Sólidos

UFMG

P1 - Introdução à Mecânica dos Sólidos

7

P1 - Introdução à Mecânica dos Sólidos

Introdução à Mecânica dos Sólidos

UFMG

Exercícios - Introd à Mecânica dos Sólidos - 2024-1

14

Exercícios - Introd à Mecânica dos Sólidos - 2024-1

Introdução à Mecânica dos Sólidos

UFMG

Lista 3 - Mecânica dos Sólidos 2022-1

2

Lista 3 - Mecânica dos Sólidos 2022-1

Introdução à Mecânica dos Sólidos

UFMG

P2 - Introdução à Mecânica dos Sólidos

6

P2 - Introdução à Mecânica dos Sólidos

Introdução à Mecânica dos Sólidos

UFMG

Exercícios - Introdução à Mecânica dos Sólidos - 2023-2

1

Exercícios - Introdução à Mecânica dos Sólidos - 2023-2

Introdução à Mecânica dos Sólidos

UFMG

Texto de pré-visualização

ℎ = 300 mm 𝐿𝐿 = 4,9 m 1) Deformação fibra inferior (DCL) Problema 5.1 Determinar a curvatura, o raio de curvatura e a deflexão no centro 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 0,00125 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌 + ℎ 2 (2𝜃𝜃) − 𝜌𝜌 (2𝜃𝜃) 𝜌𝜌 (2𝜃𝜃) 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌 + ℎ 2 − 𝜌𝜌 𝜌𝜌 = 𝜌𝜌 = ⁄ ℎ 2 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = ⁄ 300 2 0,00125 = ⁄ 300 2 0,00125 = 150 0,00125 = 120000 mm = 120 m 𝜅𝜅 = 1 𝜌𝜌 = 1 120 = 0,00833 = 8,33 × 10−3m−1 Raio de curvatura Curvatura 𝜌𝜌 𝜌𝜌 + ℎ 2 ⁄ ℎ 2 ⁄ ℎ 2 ⁄ ℎ 2 𝜌𝜌 𝐿𝐿/2 𝐿𝐿/2 𝜃𝜃 𝜃𝜃 ℎ = 300 mm 𝐿𝐿 = 4,9 m Problema 5.1 Determinar a curvatura, o raio de curvatura e a deflexão no centro 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 0,00125 2) Deflexão máxima (centro) 𝜌𝜌 𝜌𝜌 𝜌𝜌 cos 𝜃𝜃 δ 𝛿𝛿 = 𝜌𝜌 − 𝜌𝜌 cos 𝜃𝜃 𝜌𝜌 𝛿𝛿 = 𝜌𝜌(1 − cos 𝜃𝜃) sin 𝜃𝜃 = ⁄ 𝐿𝐿 2 𝜌𝜌 ≈ 𝜃𝜃 Pequenas deformações: 𝜃𝜃 = ⁄ 4,9 2 120 = 0,0204 rad = 1,169° cos 𝜃𝜃 = cos 1,169° = 0,99979 𝛿𝛿 = 𝜌𝜌 1 − cos 𝜃𝜃 = (120)(1 − 0,9979) 𝛿𝛿 = (120)(0,000208) = 0,02496 m 𝛿𝛿 ≅ 25 mm

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®