11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
12
Geometria Analítica
UERJ
3
Geometria Analítica
UERJ
2
Geometria Analítica
UERJ
Texto de pré-visualização
RESPOSTAS C(0,0,0) 3) L'índuce à d entre o ponto P(2,5,-1) e a reta r a que passa pelos pontos A(1,1,2) e B(2,-1,3).\n\n1) A Reta\n\nA = B - A = (2,-1,3)-(1,1,2) = (1,-2,1)\n\n(x,y,z) = (1,1,2) + t(1,0,-1) => eq. sd.\n\nx - 1 = t\n\ny - 1 = -t\n\nz - 2 = -t\n\n\nPara...\n\n- A distãncia entre P(2,5,-1) e r.\n\nP0 = (1,1,2)\n\nd(P0,r) = |(1/t) x(P-P0)| = |(1(4,1) x (1,6,-3))|\n\n|t|\n= (1,0,1)\n\nd(P0, r) = \\sqrt{(-6,-4,6)}\n= |(1,0,1)|\n\n\\sqrt{2}\n\nd(P0,n) = \\sqrt{36+16+36} = d(P0,n) = \\sqrt{82}/\\sqrt{2}\n\nd(P,r) = 2^{3/2}\n\n 4) Mostre que a reta r: \\displaystyle x+2 = \\frac{3y+1}{6} = \\frac{1-z}{3} \\in \\text{plano } D: 2x - 3y + 6z + 3 = 0\n\nd(P, n) = |\\frac{2x - 3y + 6z + 3}{\\sqrt{(2^{2}) + (-3)^{2} + (6^{2})}}|\n\n= |\\frac{12(0) - 3(1) + 6(9) + 3}{\\sqrt{49}}|\n\nd(P, n) = |10 + 3 + 6 + 1| \\frac{1}{\\sqrt{49}} = d (L,R) = 161 |\n\n\\frac{6}{7}\n\nx - 2 = \\frac{3y - 1}{6}\n\nx - 2 = \\frac{1 - z}{3}\n\n\\frac{6 - 6z = 3x - 6}\n\n-6 - 6z = 3x - 6 - 6\n\n-6z = 3x - 12\n\nz = 3x - 6 / -6\n\nt = \\frac{1}{3} x + 1\n\n 5) N.I. P.(1,-1,0) + t(k,2,2) + P.(2,-2,2) + 2P.(1,2,3)\n\nA1 = (1,-1,0) \\sqrt{(2,2,2)}\n\nP. = (-2,1,2)\\sqrt{(1,2,3)}\n\nd = d(n,m) = |(\\sqrt{j_1,j_2,A_1,A_2})| / |(j_1 x j_2)|\n\nd = d(n,m) = |10| / |10|\n\n= \\frac{1}{\\sqrt{2^{2}-(-4)^{2}+2^{2}}}\n\n= 2 - 18 + 4 + 12 - 4 / - 10\n\n= \\sqrt{8-18+8} + 2\n\n= d.[\\sqrt{10}]\n\n= d = d(n,m) = \\frac{5}{\\sqrt{6}}\n\n P: P(2,0,2) + t(9,4,1) P: P(2,2,0) + t(3,3,3) \n{\n x = x + 2 + 3t \n y = y + 3t \n z = z + 3t \n} \n J1 = (0,1,2) и (2,1,0) \nP = 1. \n J(2,1,0) - (9,0,2) -(1,1,1) \n (9,1,-2) \nline \nd(n,s) \n (0,2,0) \nd = |AxJ| / √ |J| \n √A3 \nd = d(n,s) |(-9,-9,0)| \nd = |(−9,9,0)| \n√(x,y,z) = 3√3| \n3−2 P: P(-4,0,-5) + t(3,4,-2) \nP: P(3,7,5) + λ(6,-4,-1) \n {\n x = -4 + 3t \n y = 4t \n z = -5 - 2t \n } \n {\n x = 3 + 6λ \n y = 7 - 4λ \n z = 5 - λ \n } \n A1 = (-4,-0,-5) \nA2 = (3,7,5) - A1 = \n(3,7,5) - (-4,0,-5) = \n(7,10) - A1A2 \n J1xJ2 \n{\n 3 4 2 \n 6 -4 6 \n 6 -4 7 \n} \n \n d(d(n,s)) = |(J1,J2,A1A2)| / |J1 x J2| \n {\n |507| \n |(-11-9-36)| \n} \n d · d(n,s) = 507 \n√(-12² + (-3)² + (-6)²) \n507 / √(144 + 81 + 1296) \n = 507/√1521 \nd = d(n,s) 507/13 \n39 / 13 \n3 = 13 P: P(0,1,2) + t(2,-2,-1) \n{\n x + y + z = 0 \n 2x - y + z = 0 \n} \n J(2,-1,1)//n \n J(3,0,3)//s \n d = ||(A)(B)(J x J)|| \n √(I x J) \n {I x J = (I) ||(B) / √(n) \n A = {(I)} \n {J} = {(2,-1,-1)} \n 5√\n d = ||(A·B)(J x J)|| = √S.c \n A = (JxJ) \n ≈ 5√3 \n 8 \n \n S(x,y) \n{\n 2 3 4 \n 0 1 −3 \n 2 −1 3 \n} \n A(3,7,3) / desconsiderando \n\n r x i+n3 \n {\n x + y + z = 0 \n y + z = 0 \n 1 / 2 \n 3x, y .\n} \n 6) Calcule a d entre os pontos P(2, 3, 1) e O(2, 2, 3) d(P, O) = |2x + y + z - 3| / \\sqrt{2^2 + 4^2 + 2^2} = |5.2 + 2.1 + 1.3 - 7| / \\sqrt{4 + 1} = |10 + 2| / \\sqrt{6} = 12 / \\sqrt{6}\n\n7) Encontre m tal que a (n, m) = \\sqrt{2}, onde \\{ \\begin{array}{l} x = -2 - t \\\\ y = 1 - t \\\\ z = 5 - t \\end{array} \\Rightarrow R_{-2, 1, 0}, \\{ n, 2, -2 \\}, S_{(1, m, 5)}, \\{ (-1, -4, -1) \\}, iS \\ = (1, m, 5) - (-2, 1, 0) R.S.\\ = (3, m - n, 5)\n\nd(n, m, n) - R.S. \\cdot (\\sqrt{u^2 + v^2}) = \\frac{13(m + 12)}{3\\sqrt{2}}\n\n\\(x + y) = \\sqrt{9 + 9} = 3\\sqrt{2}\nR.S. \\cdot (u \\times v) = 0 + 3m - 3 + 15\\n\\text{Ex. } (x, y) = 3\\text{m} + 12 = -6\\n3m + 12 = 6\\ 3m - c = 3m = -18\\n m = -2\\n m = -6\\\\n α: 2x - y + 3z + (5 + 3√7) = 0 ou α: 2x - y + 3z + (5 - 3√14) = 0 α: x + y + 3z + (1 - 3√11) = 0. (a) √(27/38) (b) 0 (c) 0 (d) 0 (e) 0 (f) 0 (g) √(165/29) (h) 0 (a) 0 (b) √(3/3) (c) 0 (d) 1 (e) 0 (f) 0 (g) 0 (h) 6/√11 x = -2 + t (1) y = 1 + 2t e z = 5 - t
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
11
Geometria Analítica
UERJ
12
Geometria Analítica
UERJ
3
Geometria Analítica
UERJ
2
Geometria Analítica
UERJ
Texto de pré-visualização
RESPOSTAS C(0,0,0) 3) L'índuce à d entre o ponto P(2,5,-1) e a reta r a que passa pelos pontos A(1,1,2) e B(2,-1,3).\n\n1) A Reta\n\nA = B - A = (2,-1,3)-(1,1,2) = (1,-2,1)\n\n(x,y,z) = (1,1,2) + t(1,0,-1) => eq. sd.\n\nx - 1 = t\n\ny - 1 = -t\n\nz - 2 = -t\n\n\nPara...\n\n- A distãncia entre P(2,5,-1) e r.\n\nP0 = (1,1,2)\n\nd(P0,r) = |(1/t) x(P-P0)| = |(1(4,1) x (1,6,-3))|\n\n|t|\n= (1,0,1)\n\nd(P0, r) = \\sqrt{(-6,-4,6)}\n= |(1,0,1)|\n\n\\sqrt{2}\n\nd(P0,n) = \\sqrt{36+16+36} = d(P0,n) = \\sqrt{82}/\\sqrt{2}\n\nd(P,r) = 2^{3/2}\n\n 4) Mostre que a reta r: \\displaystyle x+2 = \\frac{3y+1}{6} = \\frac{1-z}{3} \\in \\text{plano } D: 2x - 3y + 6z + 3 = 0\n\nd(P, n) = |\\frac{2x - 3y + 6z + 3}{\\sqrt{(2^{2}) + (-3)^{2} + (6^{2})}}|\n\n= |\\frac{12(0) - 3(1) + 6(9) + 3}{\\sqrt{49}}|\n\nd(P, n) = |10 + 3 + 6 + 1| \\frac{1}{\\sqrt{49}} = d (L,R) = 161 |\n\n\\frac{6}{7}\n\nx - 2 = \\frac{3y - 1}{6}\n\nx - 2 = \\frac{1 - z}{3}\n\n\\frac{6 - 6z = 3x - 6}\n\n-6 - 6z = 3x - 6 - 6\n\n-6z = 3x - 12\n\nz = 3x - 6 / -6\n\nt = \\frac{1}{3} x + 1\n\n 5) N.I. P.(1,-1,0) + t(k,2,2) + P.(2,-2,2) + 2P.(1,2,3)\n\nA1 = (1,-1,0) \\sqrt{(2,2,2)}\n\nP. = (-2,1,2)\\sqrt{(1,2,3)}\n\nd = d(n,m) = |(\\sqrt{j_1,j_2,A_1,A_2})| / |(j_1 x j_2)|\n\nd = d(n,m) = |10| / |10|\n\n= \\frac{1}{\\sqrt{2^{2}-(-4)^{2}+2^{2}}}\n\n= 2 - 18 + 4 + 12 - 4 / - 10\n\n= \\sqrt{8-18+8} + 2\n\n= d.[\\sqrt{10}]\n\n= d = d(n,m) = \\frac{5}{\\sqrt{6}}\n\n P: P(2,0,2) + t(9,4,1) P: P(2,2,0) + t(3,3,3) \n{\n x = x + 2 + 3t \n y = y + 3t \n z = z + 3t \n} \n J1 = (0,1,2) и (2,1,0) \nP = 1. \n J(2,1,0) - (9,0,2) -(1,1,1) \n (9,1,-2) \nline \nd(n,s) \n (0,2,0) \nd = |AxJ| / √ |J| \n √A3 \nd = d(n,s) |(-9,-9,0)| \nd = |(−9,9,0)| \n√(x,y,z) = 3√3| \n3−2 P: P(-4,0,-5) + t(3,4,-2) \nP: P(3,7,5) + λ(6,-4,-1) \n {\n x = -4 + 3t \n y = 4t \n z = -5 - 2t \n } \n {\n x = 3 + 6λ \n y = 7 - 4λ \n z = 5 - λ \n } \n A1 = (-4,-0,-5) \nA2 = (3,7,5) - A1 = \n(3,7,5) - (-4,0,-5) = \n(7,10) - A1A2 \n J1xJ2 \n{\n 3 4 2 \n 6 -4 6 \n 6 -4 7 \n} \n \n d(d(n,s)) = |(J1,J2,A1A2)| / |J1 x J2| \n {\n |507| \n |(-11-9-36)| \n} \n d · d(n,s) = 507 \n√(-12² + (-3)² + (-6)²) \n507 / √(144 + 81 + 1296) \n = 507/√1521 \nd = d(n,s) 507/13 \n39 / 13 \n3 = 13 P: P(0,1,2) + t(2,-2,-1) \n{\n x + y + z = 0 \n 2x - y + z = 0 \n} \n J(2,-1,1)//n \n J(3,0,3)//s \n d = ||(A)(B)(J x J)|| \n √(I x J) \n {I x J = (I) ||(B) / √(n) \n A = {(I)} \n {J} = {(2,-1,-1)} \n 5√\n d = ||(A·B)(J x J)|| = √S.c \n A = (JxJ) \n ≈ 5√3 \n 8 \n \n S(x,y) \n{\n 2 3 4 \n 0 1 −3 \n 2 −1 3 \n} \n A(3,7,3) / desconsiderando \n\n r x i+n3 \n {\n x + y + z = 0 \n y + z = 0 \n 1 / 2 \n 3x, y .\n} \n 6) Calcule a d entre os pontos P(2, 3, 1) e O(2, 2, 3) d(P, O) = |2x + y + z - 3| / \\sqrt{2^2 + 4^2 + 2^2} = |5.2 + 2.1 + 1.3 - 7| / \\sqrt{4 + 1} = |10 + 2| / \\sqrt{6} = 12 / \\sqrt{6}\n\n7) Encontre m tal que a (n, m) = \\sqrt{2}, onde \\{ \\begin{array}{l} x = -2 - t \\\\ y = 1 - t \\\\ z = 5 - t \\end{array} \\Rightarrow R_{-2, 1, 0}, \\{ n, 2, -2 \\}, S_{(1, m, 5)}, \\{ (-1, -4, -1) \\}, iS \\ = (1, m, 5) - (-2, 1, 0) R.S.\\ = (3, m - n, 5)\n\nd(n, m, n) - R.S. \\cdot (\\sqrt{u^2 + v^2}) = \\frac{13(m + 12)}{3\\sqrt{2}}\n\n\\(x + y) = \\sqrt{9 + 9} = 3\\sqrt{2}\nR.S. \\cdot (u \\times v) = 0 + 3m - 3 + 15\\n\\text{Ex. } (x, y) = 3\\text{m} + 12 = -6\\n3m + 12 = 6\\ 3m - c = 3m = -18\\n m = -2\\n m = -6\\\\n α: 2x - y + 3z + (5 + 3√7) = 0 ou α: 2x - y + 3z + (5 - 3√14) = 0 α: x + y + 3z + (1 - 3√11) = 0. (a) √(27/38) (b) 0 (c) 0 (d) 0 (e) 0 (f) 0 (g) √(165/29) (h) 0 (a) 0 (b) √(3/3) (c) 0 (d) 1 (e) 0 (f) 0 (g) 0 (h) 6/√11 x = -2 + t (1) y = 1 + 2t e z = 5 - t