·
Matemática ·
Geometria Analítica
Envie sua pergunta para a IA e receba a resposta na hora
Recomendado para você
11
Lista 5 de Geometria Analítica Professor Jaime Velasco
Geometria Analítica
UERJ
11
Aulas de Geometria Analítica do Professor Jaime Velasco Parte 4
Geometria Analítica
UERJ
11
Aulas de Geometria Analítica do Professor Jaime Velasco Parte 3
Geometria Analítica
UERJ
11
Lista de Hipérbole de Geometria Analítica Professor Jaime Velasco
Geometria Analítica
UERJ
11
Lista 10 de Geometria Analítica Professor Jaime Velasco
Geometria Analítica
UERJ
11
Aulas de Geometria Analítica do Professor Jaime Velasco Parte 2
Geometria Analítica
UERJ
11
Lista 8 de Geometria Analítica Professor Jaime Velasco
Geometria Analítica
UERJ
8
Ma23_p1_gabarito Ufprpdf
Geometria Analítica
UEPB
11
Geometria Analítica para Computação pdf
Geometria Analítica
UNIOESTE
1
Geometría Analítica - Conamat - 1ed
Geometria Analítica
UNISUL
Texto de pré-visualização
RESPOSTAS C(0,0,0) 3) L'índuce à d entre o ponto P(2,5,-1) e a reta r a que passa pelos pontos A(1,1,2) e B(2,-1,3).\n\n1) A Reta\n\nA = B - A = (2,-1,3)-(1,1,2) = (1,-2,1)\n\n(x,y,z) = (1,1,2) + t(1,0,-1) => eq. sd.\n\nx - 1 = t\n\ny - 1 = -t\n\nz - 2 = -t\n\n\nPara...\n\n- A distãncia entre P(2,5,-1) e r.\n\nP0 = (1,1,2)\n\nd(P0,r) = |(1/t) x(P-P0)| = |(1(4,1) x (1,6,-3))|\n\n|t|\n= (1,0,1)\n\nd(P0, r) = \\sqrt{(-6,-4,6)}\n= |(1,0,1)|\n\n\\sqrt{2}\n\nd(P0,n) = \\sqrt{36+16+36} = d(P0,n) = \\sqrt{82}/\\sqrt{2}\n\nd(P,r) = 2^{3/2}\n\n 4) Mostre que a reta r: \\displaystyle x+2 = \\frac{3y+1}{6} = \\frac{1-z}{3} \\in \\text{plano } D: 2x - 3y + 6z + 3 = 0\n\nd(P, n) = |\\frac{2x - 3y + 6z + 3}{\\sqrt{(2^{2}) + (-3)^{2} + (6^{2})}}|\n\n= |\\frac{12(0) - 3(1) + 6(9) + 3}{\\sqrt{49}}|\n\nd(P, n) = |10 + 3 + 6 + 1| \\frac{1}{\\sqrt{49}} = d (L,R) = 161 |\n\n\\frac{6}{7}\n\nx - 2 = \\frac{3y - 1}{6}\n\nx - 2 = \\frac{1 - z}{3}\n\n\\frac{6 - 6z = 3x - 6}\n\n-6 - 6z = 3x - 6 - 6\n\n-6z = 3x - 12\n\nz = 3x - 6 / -6\n\nt = \\frac{1}{3} x + 1\n\n 5) N.I. P.(1,-1,0) + t(k,2,2) + P.(2,-2,2) + 2P.(1,2,3)\n\nA1 = (1,-1,0) \\sqrt{(2,2,2)}\n\nP. = (-2,1,2)\\sqrt{(1,2,3)}\n\nd = d(n,m) = |(\\sqrt{j_1,j_2,A_1,A_2})| / |(j_1 x j_2)|\n\nd = d(n,m) = |10| / |10|\n\n= \\frac{1}{\\sqrt{2^{2}-(-4)^{2}+2^{2}}}\n\n= 2 - 18 + 4 + 12 - 4 / - 10\n\n= \\sqrt{8-18+8} + 2\n\n= d.[\\sqrt{10}]\n\n= d = d(n,m) = \\frac{5}{\\sqrt{6}}\n\n P: P(2,0,2) + t(9,4,1) P: P(2,2,0) + t(3,3,3) \n{\n x = x + 2 + 3t \n y = y + 3t \n z = z + 3t \n} \n J1 = (0,1,2) и (2,1,0) \nP = 1. \n J(2,1,0) - (9,0,2) -(1,1,1) \n (9,1,-2) \nline \nd(n,s) \n (0,2,0) \nd = |AxJ| / √ |J| \n √A3 \nd = d(n,s) |(-9,-9,0)| \nd = |(−9,9,0)| \n√(x,y,z) = 3√3| \n3−2 P: P(-4,0,-5) + t(3,4,-2) \nP: P(3,7,5) + λ(6,-4,-1) \n {\n x = -4 + 3t \n y = 4t \n z = -5 - 2t \n } \n {\n x = 3 + 6λ \n y = 7 - 4λ \n z = 5 - λ \n } \n A1 = (-4,-0,-5) \nA2 = (3,7,5) - A1 = \n(3,7,5) - (-4,0,-5) = \n(7,10) - A1A2 \n J1xJ2 \n{\n 3 4 2 \n 6 -4 6 \n 6 -4 7 \n} \n \n d(d(n,s)) = |(J1,J2,A1A2)| / |J1 x J2| \n {\n |507| \n |(-11-9-36)| \n} \n d · d(n,s) = 507 \n√(-12² + (-3)² + (-6)²) \n507 / √(144 + 81 + 1296) \n = 507/√1521 \nd = d(n,s) 507/13 \n39 / 13 \n3 = 13 P: P(0,1,2) + t(2,-2,-1) \n{\n x + y + z = 0 \n 2x - y + z = 0 \n} \n J(2,-1,1)//n \n J(3,0,3)//s \n d = ||(A)(B)(J x J)|| \n √(I x J) \n {I x J = (I) ||(B) / √(n) \n A = {(I)} \n {J} = {(2,-1,-1)} \n 5√\n d = ||(A·B)(J x J)|| = √S.c \n A = (JxJ) \n ≈ 5√3 \n 8 \n \n S(x,y) \n{\n 2 3 4 \n 0 1 −3 \n 2 −1 3 \n} \n A(3,7,3) / desconsiderando \n\n r x i+n3 \n {\n x + y + z = 0 \n y + z = 0 \n 1 / 2 \n 3x, y .\n} \n 6) Calcule a d entre os pontos P(2, 3, 1) e O(2, 2, 3) d(P, O) = |2x + y + z - 3| / \\sqrt{2^2 + 4^2 + 2^2} = |5.2 + 2.1 + 1.3 - 7| / \\sqrt{4 + 1} = |10 + 2| / \\sqrt{6} = 12 / \\sqrt{6}\n\n7) Encontre m tal que a (n, m) = \\sqrt{2}, onde \\{ \\begin{array}{l} x = -2 - t \\\\ y = 1 - t \\\\ z = 5 - t \\end{array} \\Rightarrow R_{-2, 1, 0}, \\{ n, 2, -2 \\}, S_{(1, m, 5)}, \\{ (-1, -4, -1) \\}, iS \\ = (1, m, 5) - (-2, 1, 0) R.S.\\ = (3, m - n, 5)\n\nd(n, m, n) - R.S. \\cdot (\\sqrt{u^2 + v^2}) = \\frac{13(m + 12)}{3\\sqrt{2}}\n\n\\(x + y) = \\sqrt{9 + 9} = 3\\sqrt{2}\nR.S. \\cdot (u \\times v) = 0 + 3m - 3 + 15\\n\\text{Ex. } (x, y) = 3\\text{m} + 12 = -6\\n3m + 12 = 6\\ 3m - c = 3m = -18\\n m = -2\\n m = -6\\\\n α: 2x - y + 3z + (5 + 3√7) = 0 ou α: 2x - y + 3z + (5 - 3√14) = 0 α: x + y + 3z + (1 - 3√11) = 0. (a) √(27/38) (b) 0 (c) 0 (d) 0 (e) 0 (f) 0 (g) √(165/29) (h) 0 (a) 0 (b) √(3/3) (c) 0 (d) 1 (e) 0 (f) 0 (g) 0 (h) 6/√11 x = -2 + t (1) y = 1 + 2t e z = 5 - t
Envie sua pergunta para a IA e receba a resposta na hora
Recomendado para você
11
Lista 5 de Geometria Analítica Professor Jaime Velasco
Geometria Analítica
UERJ
11
Aulas de Geometria Analítica do Professor Jaime Velasco Parte 4
Geometria Analítica
UERJ
11
Aulas de Geometria Analítica do Professor Jaime Velasco Parte 3
Geometria Analítica
UERJ
11
Lista de Hipérbole de Geometria Analítica Professor Jaime Velasco
Geometria Analítica
UERJ
11
Lista 10 de Geometria Analítica Professor Jaime Velasco
Geometria Analítica
UERJ
11
Aulas de Geometria Analítica do Professor Jaime Velasco Parte 2
Geometria Analítica
UERJ
11
Lista 8 de Geometria Analítica Professor Jaime Velasco
Geometria Analítica
UERJ
8
Ma23_p1_gabarito Ufprpdf
Geometria Analítica
UEPB
11
Geometria Analítica para Computação pdf
Geometria Analítica
UNIOESTE
1
Geometría Analítica - Conamat - 1ed
Geometria Analítica
UNISUL
Texto de pré-visualização
RESPOSTAS C(0,0,0) 3) L'índuce à d entre o ponto P(2,5,-1) e a reta r a que passa pelos pontos A(1,1,2) e B(2,-1,3).\n\n1) A Reta\n\nA = B - A = (2,-1,3)-(1,1,2) = (1,-2,1)\n\n(x,y,z) = (1,1,2) + t(1,0,-1) => eq. sd.\n\nx - 1 = t\n\ny - 1 = -t\n\nz - 2 = -t\n\n\nPara...\n\n- A distãncia entre P(2,5,-1) e r.\n\nP0 = (1,1,2)\n\nd(P0,r) = |(1/t) x(P-P0)| = |(1(4,1) x (1,6,-3))|\n\n|t|\n= (1,0,1)\n\nd(P0, r) = \\sqrt{(-6,-4,6)}\n= |(1,0,1)|\n\n\\sqrt{2}\n\nd(P0,n) = \\sqrt{36+16+36} = d(P0,n) = \\sqrt{82}/\\sqrt{2}\n\nd(P,r) = 2^{3/2}\n\n 4) Mostre que a reta r: \\displaystyle x+2 = \\frac{3y+1}{6} = \\frac{1-z}{3} \\in \\text{plano } D: 2x - 3y + 6z + 3 = 0\n\nd(P, n) = |\\frac{2x - 3y + 6z + 3}{\\sqrt{(2^{2}) + (-3)^{2} + (6^{2})}}|\n\n= |\\frac{12(0) - 3(1) + 6(9) + 3}{\\sqrt{49}}|\n\nd(P, n) = |10 + 3 + 6 + 1| \\frac{1}{\\sqrt{49}} = d (L,R) = 161 |\n\n\\frac{6}{7}\n\nx - 2 = \\frac{3y - 1}{6}\n\nx - 2 = \\frac{1 - z}{3}\n\n\\frac{6 - 6z = 3x - 6}\n\n-6 - 6z = 3x - 6 - 6\n\n-6z = 3x - 12\n\nz = 3x - 6 / -6\n\nt = \\frac{1}{3} x + 1\n\n 5) N.I. P.(1,-1,0) + t(k,2,2) + P.(2,-2,2) + 2P.(1,2,3)\n\nA1 = (1,-1,0) \\sqrt{(2,2,2)}\n\nP. = (-2,1,2)\\sqrt{(1,2,3)}\n\nd = d(n,m) = |(\\sqrt{j_1,j_2,A_1,A_2})| / |(j_1 x j_2)|\n\nd = d(n,m) = |10| / |10|\n\n= \\frac{1}{\\sqrt{2^{2}-(-4)^{2}+2^{2}}}\n\n= 2 - 18 + 4 + 12 - 4 / - 10\n\n= \\sqrt{8-18+8} + 2\n\n= d.[\\sqrt{10}]\n\n= d = d(n,m) = \\frac{5}{\\sqrt{6}}\n\n P: P(2,0,2) + t(9,4,1) P: P(2,2,0) + t(3,3,3) \n{\n x = x + 2 + 3t \n y = y + 3t \n z = z + 3t \n} \n J1 = (0,1,2) и (2,1,0) \nP = 1. \n J(2,1,0) - (9,0,2) -(1,1,1) \n (9,1,-2) \nline \nd(n,s) \n (0,2,0) \nd = |AxJ| / √ |J| \n √A3 \nd = d(n,s) |(-9,-9,0)| \nd = |(−9,9,0)| \n√(x,y,z) = 3√3| \n3−2 P: P(-4,0,-5) + t(3,4,-2) \nP: P(3,7,5) + λ(6,-4,-1) \n {\n x = -4 + 3t \n y = 4t \n z = -5 - 2t \n } \n {\n x = 3 + 6λ \n y = 7 - 4λ \n z = 5 - λ \n } \n A1 = (-4,-0,-5) \nA2 = (3,7,5) - A1 = \n(3,7,5) - (-4,0,-5) = \n(7,10) - A1A2 \n J1xJ2 \n{\n 3 4 2 \n 6 -4 6 \n 6 -4 7 \n} \n \n d(d(n,s)) = |(J1,J2,A1A2)| / |J1 x J2| \n {\n |507| \n |(-11-9-36)| \n} \n d · d(n,s) = 507 \n√(-12² + (-3)² + (-6)²) \n507 / √(144 + 81 + 1296) \n = 507/√1521 \nd = d(n,s) 507/13 \n39 / 13 \n3 = 13 P: P(0,1,2) + t(2,-2,-1) \n{\n x + y + z = 0 \n 2x - y + z = 0 \n} \n J(2,-1,1)//n \n J(3,0,3)//s \n d = ||(A)(B)(J x J)|| \n √(I x J) \n {I x J = (I) ||(B) / √(n) \n A = {(I)} \n {J} = {(2,-1,-1)} \n 5√\n d = ||(A·B)(J x J)|| = √S.c \n A = (JxJ) \n ≈ 5√3 \n 8 \n \n S(x,y) \n{\n 2 3 4 \n 0 1 −3 \n 2 −1 3 \n} \n A(3,7,3) / desconsiderando \n\n r x i+n3 \n {\n x + y + z = 0 \n y + z = 0 \n 1 / 2 \n 3x, y .\n} \n 6) Calcule a d entre os pontos P(2, 3, 1) e O(2, 2, 3) d(P, O) = |2x + y + z - 3| / \\sqrt{2^2 + 4^2 + 2^2} = |5.2 + 2.1 + 1.3 - 7| / \\sqrt{4 + 1} = |10 + 2| / \\sqrt{6} = 12 / \\sqrt{6}\n\n7) Encontre m tal que a (n, m) = \\sqrt{2}, onde \\{ \\begin{array}{l} x = -2 - t \\\\ y = 1 - t \\\\ z = 5 - t \\end{array} \\Rightarrow R_{-2, 1, 0}, \\{ n, 2, -2 \\}, S_{(1, m, 5)}, \\{ (-1, -4, -1) \\}, iS \\ = (1, m, 5) - (-2, 1, 0) R.S.\\ = (3, m - n, 5)\n\nd(n, m, n) - R.S. \\cdot (\\sqrt{u^2 + v^2}) = \\frac{13(m + 12)}{3\\sqrt{2}}\n\n\\(x + y) = \\sqrt{9 + 9} = 3\\sqrt{2}\nR.S. \\cdot (u \\times v) = 0 + 3m - 3 + 15\\n\\text{Ex. } (x, y) = 3\\text{m} + 12 = -6\\n3m + 12 = 6\\ 3m - c = 3m = -18\\n m = -2\\n m = -6\\\\n α: 2x - y + 3z + (5 + 3√7) = 0 ou α: 2x - y + 3z + (5 - 3√14) = 0 α: x + y + 3z + (1 - 3√11) = 0. (a) √(27/38) (b) 0 (c) 0 (d) 0 (e) 0 (f) 0 (g) √(165/29) (h) 0 (a) 0 (b) √(3/3) (c) 0 (d) 1 (e) 0 (f) 0 (g) 0 (h) 6/√11 x = -2 + t (1) y = 1 + 2t e z = 5 - t