• Home
  • Chat IA
  • Guru IA
  • Tutores
  • Central de ajuda
Home
Chat IA
Guru IA
Tutores

·

Engenharia Civil ·

Geometria Analítica

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Notas de Aula de Geometria Analítica - Sistemas Lineares

10

Notas de Aula de Geometria Analítica - Sistemas Lineares

Geometria Analítica

UFSCAR

Geometria Analítica Lista de Exercícios - Vetores Produto Escalar e Ortogonalidade

3

Geometria Analítica Lista de Exercícios - Vetores Produto Escalar e Ortogonalidade

Geometria Analítica

UFSCAR

Vetores em Geometria Analítica

11

Vetores em Geometria Analítica

Geometria Analítica

UFSCAR

Lista de Exercicios Resolvida Geometria Analitica - Elipses Hipérboles e Parábolas

1

Lista de Exercicios Resolvida Geometria Analitica - Elipses Hipérboles e Parábolas

Geometria Analítica

UFSCAR

Simulados Bônus

19

Simulados Bônus

Geometria Analítica

UFSCAR

Notas de Aula de Geometria Analítica - Mudança de Base e Produto Escalar exercícios Resolvidos

11

Notas de Aula de Geometria Analítica - Mudança de Base e Produto Escalar exercícios Resolvidos

Geometria Analítica

UFSCAR

Notas de Aula de Geometria Analítica - Vetores exercícios Resolvidos

11

Notas de Aula de Geometria Analítica - Vetores exercícios Resolvidos

Geometria Analítica

UFSCAR

Notas de Aulas de Geometria Aanlítica - Cônicas exercícios Resolvidos

11

Notas de Aulas de Geometria Aanlítica - Cônicas exercícios Resolvidos

Geometria Analítica

UFSCAR

Notas de Aula de Geometria Analítica - Sistema de Coordenadas

5

Notas de Aula de Geometria Analítica - Sistema de Coordenadas

Geometria Analítica

UFSCAR

Material de Geometria Analítica Completo - Notas de Aulas e Exercícios Resolvidos

11

Material de Geometria Analítica Completo - Notas de Aulas e Exercícios Resolvidos

Geometria Analítica

UFSCAR

Texto de pré-visualização

Prova de de G.A. prof. Direcu-turma D.\n05 de janeiro de 2017 (Ainda 2ª sem. letivo de 2016)\n\nATENÇÃO: coloque um sistema de coordenadas S1 com centro em A', e em relação a este, faça as questões de 1 a 2 abaixo.\n\nQUESTÃO 1\na) Ache equação vetorial do plano paralelo\nao plano GDH e contendo o ponto E'.\nb) Ache a equação vetorial da reta\nparalela a reta G'/D e passando por B.\n\nQUESTÃO 2\na) em relação ao sistema S1 ache a equação\paramétrica da reta dada pela interseção\ndos planos: plano GDH e plano BED'.\nb) As coordenadas do ponto de interseção do\nplano GDH com a reta A'E'.\n\nQUESTÃO 3\nSão dadas três bases β1 = (î,ĵ,k̂) β2 = (î1,î2,î3) β3 = (ê1,ê2,ê3) e as matrizes\n\nMβ1 = \n| 0 1 -2 |\n| -3 6 -3 |\n| -1 2 -3 |\n\nMβ2 = \n| 5 8 6 |\n| -3 -6 -3 |\n| 2 -3 1 |\n\nMβ3 = \n| 1 -1 1 |\n| -2 2 2 |\n| 1 -2 1 |\n\n\nSe (v̅) = (1,0,-1), (u̅) = (0,1,1) e (w̅) = (0,0,1); escreva v̅ + u̅ + w̅ como combinação linear dos vetores da base β1\n\nb) Verifique, em termos de coordenadas, se o conjunto A = {u̅, v̅, w̅} é um conjunto L.I. ou L.D.\n(As coordenadas dos vetores do conjunto A são dadas no item a).\n\nQUESTÃO 4 Exiba as soluções dos sistema linear abaixo:\n { x - 3y - 2z + 4t = 5\n 3x - 3y + 8t = 18\n 2x - 3y + 5z - 4t = 19\n\nb-) { x - 3y - 0z = 5\n\nQUESTÃO 5 Prove algebraicamente as seguintes afirmações:\na-) Se A = {u̅, v̅} é um conjunto L.I então o conjunto B = {u̅ - v̅, v̅ - 2u̅} é um conjunto L.I.\n\nb-) Se C = {2u̅ - 3v̅, u̅ - 5v̅} é L.I então o conjunto A = {u̅, v̅} é L.I.

Envie sua pergunta para a IA e receba a resposta na hora

Recomendado para você

Notas de Aula de Geometria Analítica - Sistemas Lineares

10

Notas de Aula de Geometria Analítica - Sistemas Lineares

Geometria Analítica

UFSCAR

Geometria Analítica Lista de Exercícios - Vetores Produto Escalar e Ortogonalidade

3

Geometria Analítica Lista de Exercícios - Vetores Produto Escalar e Ortogonalidade

Geometria Analítica

UFSCAR

Vetores em Geometria Analítica

11

Vetores em Geometria Analítica

Geometria Analítica

UFSCAR

Lista de Exercicios Resolvida Geometria Analitica - Elipses Hipérboles e Parábolas

1

Lista de Exercicios Resolvida Geometria Analitica - Elipses Hipérboles e Parábolas

Geometria Analítica

UFSCAR

Simulados Bônus

19

Simulados Bônus

Geometria Analítica

UFSCAR

Notas de Aula de Geometria Analítica - Mudança de Base e Produto Escalar exercícios Resolvidos

11

Notas de Aula de Geometria Analítica - Mudança de Base e Produto Escalar exercícios Resolvidos

Geometria Analítica

UFSCAR

Notas de Aula de Geometria Analítica - Vetores exercícios Resolvidos

11

Notas de Aula de Geometria Analítica - Vetores exercícios Resolvidos

Geometria Analítica

UFSCAR

Notas de Aulas de Geometria Aanlítica - Cônicas exercícios Resolvidos

11

Notas de Aulas de Geometria Aanlítica - Cônicas exercícios Resolvidos

Geometria Analítica

UFSCAR

Notas de Aula de Geometria Analítica - Sistema de Coordenadas

5

Notas de Aula de Geometria Analítica - Sistema de Coordenadas

Geometria Analítica

UFSCAR

Material de Geometria Analítica Completo - Notas de Aulas e Exercícios Resolvidos

11

Material de Geometria Analítica Completo - Notas de Aulas e Exercícios Resolvidos

Geometria Analítica

UFSCAR

Texto de pré-visualização

Prova de de G.A. prof. Direcu-turma D.\n05 de janeiro de 2017 (Ainda 2ª sem. letivo de 2016)\n\nATENÇÃO: coloque um sistema de coordenadas S1 com centro em A', e em relação a este, faça as questões de 1 a 2 abaixo.\n\nQUESTÃO 1\na) Ache equação vetorial do plano paralelo\nao plano GDH e contendo o ponto E'.\nb) Ache a equação vetorial da reta\nparalela a reta G'/D e passando por B.\n\nQUESTÃO 2\na) em relação ao sistema S1 ache a equação\paramétrica da reta dada pela interseção\ndos planos: plano GDH e plano BED'.\nb) As coordenadas do ponto de interseção do\nplano GDH com a reta A'E'.\n\nQUESTÃO 3\nSão dadas três bases β1 = (î,ĵ,k̂) β2 = (î1,î2,î3) β3 = (ê1,ê2,ê3) e as matrizes\n\nMβ1 = \n| 0 1 -2 |\n| -3 6 -3 |\n| -1 2 -3 |\n\nMβ2 = \n| 5 8 6 |\n| -3 -6 -3 |\n| 2 -3 1 |\n\nMβ3 = \n| 1 -1 1 |\n| -2 2 2 |\n| 1 -2 1 |\n\n\nSe (v̅) = (1,0,-1), (u̅) = (0,1,1) e (w̅) = (0,0,1); escreva v̅ + u̅ + w̅ como combinação linear dos vetores da base β1\n\nb) Verifique, em termos de coordenadas, se o conjunto A = {u̅, v̅, w̅} é um conjunto L.I. ou L.D.\n(As coordenadas dos vetores do conjunto A são dadas no item a).\n\nQUESTÃO 4 Exiba as soluções dos sistema linear abaixo:\n { x - 3y - 2z + 4t = 5\n 3x - 3y + 8t = 18\n 2x - 3y + 5z - 4t = 19\n\nb-) { x - 3y - 0z = 5\n\nQUESTÃO 5 Prove algebraicamente as seguintes afirmações:\na-) Se A = {u̅, v̅} é um conjunto L.I então o conjunto B = {u̅ - v̅, v̅ - 2u̅} é um conjunto L.I.\n\nb-) Se C = {2u̅ - 3v̅, u̅ - 5v̅} é L.I então o conjunto A = {u̅, v̅} é L.I.

Sua Nova Sala de Aula

Sua Nova Sala de Aula

Empresa

Central de ajuda Contato Blog

Legal

Termos de uso Política de privacidade Política de cookies Código de honra

Baixe o app

4,8
(35.000 avaliações)
© 2025 Meu Guru®